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Research has been carried out in the areas of (1) Two-level
atom and radiation pulse, (2) Effects of collisions on atomic
coherences, (3) Effects of collisions on Zeeman coherences, (4)
Colision effects in degenerate-four-wave-mixing, and (5) Dressed-atom

picture in laser spectroscopy.

"1, Two-level Atom and Radiation Pulse (P. Berman, E. Robinson)

The work reported in last year's Annual Report(l) has been
completed. In collaboration with Dr. A. Bambini (Quantum Electronics
Institute, Florence, Italy), we have found an analytic solution
to the problem of determining the atomic state probability amplitudes
when a two-level atom interacts with a radiation pulse‘(z)* Until
this work, the only analytic solution that had been obtained for
smooth pulses (assuming non-zero detuning of the field from the
atomic resonance) was that for a hyperbolic secant coupling pulse.
The class of pulse functions for which we have found a solution
contains the hyperbolic secant pulse as a special case. All other
pulses in the class, however, are not symmetric about any time during
the pulse, For these asymmetric pulses, a qualitatively new feature
arises. In contrast to the situation for symmetric pulses, there
are no pulse intensities for which the system returns to its initial

(3)*

conditions., Robinson has given a general proof of this result

by relating the atom-pulse equations to an eigenvalue problem.

* Asterisks on references indicate that the reference is appended
to this report.

P




o

A

R wryrms
A R AR A E N B 5 ]

The pulses for which we have obtained analytic solutons can
have very long leading or trailing edges. We have given a physical

(2)

explanation to the response of the atoms to such pulses, The
availability of an analytic solution for asymmetric pulses may
prove useful in problems where pulses are shaped to provide a given

response of the atomic system (e.g. laser-pellet interactions in

laser fusion).

2. Effects of Collisions on Atomic Coherenczs (P. Berman)

In collaboration with T.W, Mossberg and S.R. Hartmann (Columbia
University), significant progress has been made in understanding
collisional processes in atomic and molecular vapors. In an atomic
vapor, a quantity of physical interest is the collision kernel
wii(3'»3) giving the probability density per unit time that an atom
in state 1 undergoes a change of velocity trom 3' to 3, owing to
collisions with perturber atoms. For atomr in a superposition of
states 1 and j there is an analogous "kernel" wij(3'+ 3) (it need
not be positive) which describes the effects of collisions on atomic
state coherences. The coherence kernel is important in problems
relating to atomic spectroscopy where an exterral radiation field
creates a linear superposition of atomic states. The coherence
kernel specifies the manner in which collisions modify superposition
states; in turn the collislon-induced modification alters the
absorptive and dispersive properties of the vapor. A complete
analysis of the line shapes associated with laser spectroscopy

cain be achieved only with an understanding of the collision kernels.
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Conversely, the line shapes can be used to provide inforamtion on
collisional processes occurring within the vapor.

(4): but

Formal expressions for the collision kernels exis:
limited progress has been achieved in gaining physical insight into
those expressions for the case when the collisional interactions
{>r states i and j differ appreciably (as they will for most electronic
transition), Classically, the i and j state populations would follow
different trajectories during a collision, and it is not obvious
that a collision trajectory can be assigned to “he atcnic coherence
(superposition state).,

Using arguments based on the uncertainty principle, we have

* *
(5)%, (6) that collisions can be divided roughly into two

shown
regions., Let bo be some characteristic impact parameter in the
scattering process. For collisions having impact parameters b<bo,
collisions may be treated classically leading to classical population
kernels and vanishing coherence kernels. The coherence kerael
vanishes owing to a spatial separation of the state i and j collision
trajectories. On the other hand, collisions having b>bo must be
treated quantum-mechanically. These collisions give rise to diffrac-
tive scattering contributions to both the population and coherence
kernels, An extensive theoretical article on this subject is in
preparation,

(5),(6),(7)

Experimentally, the various conclusions mentioned
above have been verified using coherent transient techniques. It
seems that a comprehensive understanding of the effects of collisiomns

on atoms prepared in a linear superposition of electronic states has

been achieved.



3. Effects of Collisions on Zeeman Coherences (P. Berman)
Agother area where collisions can play an important role is
in exp;riments in which a magnetic state (Zeeman) coherence is
generated. With laser spectroscopic methods, such coherences are
generally created by the action of two fields as showﬁ below.

coherence
P -~

-

The action of the two fields leaves the atom in a linear superposition
of magnetic substates. Collisions modify this magnetic state coherence.
There has been significant renewed experimental interest in the

ONOY

effects of collisions on Zeeman coherences
While formal expressions for the collision kernels exist(a), it
has been difficult to give a physical interpretation to these results.
In contrast to the electronic state case (Sec. 2), it is not meaningful
to distinguish populations from coherences in the magnetic sublevel
case, since these definitions will depend on the axis of quantization.
Thus, it becomes an interesting problem to understand collision
trajectory effects. Can polarization or population be transferred
from one velocity class to another?

With J.L. LeGouet (Laboratoire Aime Cotton, Orsay, France), we

have given the first physical picture of collisional effects on

by




* :
(9 A collision can be divided into two regions,

Zeeman coherences.
r < T, and r > Tos where T, is some characteristic atom~perturber
separation. For r > Tos the common trajectory approximation is valid
and the collision mixes the magnetic substates, ?or r < s the
collision interaction is strong enough so thut there exist adiabatic
states which are not mixed by the collision. Each of these adiabatic
states follows a distinct trajectory for r < Ty The general theory
9,

and method of calculation has been given ~’; specific evaluations

of the collision parameters are in progress.

4. Collision Effects in Degenerate-Four-Wave-Mixing (P. Berman)

In collaboration with L.M. Humphrey and P. Liao (Bell Laboratories),

we have tried to explain an experiment in which collisions enhance

(10) %

certain Degenerate-Four-Wave-Mixing (D4WM) signals. This is

another area that is receiving a great deal of experimental and

theoretical interest.(ll)

The collision effects are basically related
to those discussed in Sec. 3.

There remains an unexplained feature in Humphreyand Liao's data.
It appears as if foreign gas collisions are depolarizing the ground
state of Na with cross-sections on the order of lOOXz, whereas it is
well-known that such cross sections should be a factor of 10-7 smaller.

Work on the theory of collision effects in D4WM is continuing in

collaboration with J, Lam (Hughes Research).

5. Dressed-Atom Picture in Laser Spectroscopy (R. Salomaa, P. Berman)
A rigorous comparison between the Dressed-Atom Picture (DAP) and

Bare-Atom Picture (BAP) as applied to laser spectroscopy has been

55—
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carried out.(lz)

An article representing our work in this area will
be éubmitted for publication in the near future.

In the BAP, the basis states are those of the free atom and free
field whereas, in the DAP, the basils states encompass some part of
the atom-field interaction. Whereas calculations are usually more
easily done using the BAP, one can gian useful insight into the
underlying physical processes using the DAP. Moreover, when the
radiation field strengths (in frequency units) are larger than the
relaxation rates in the problem, the DAP equations simplify considerably
and lead to line shape expressions which may be given a simple inter-
pretation.

We have sued the DAP to obtain resonance conditions for (1)
traveling-wave fields interacting with three and four-level atoms
and (2) a standing-wave saturato; and traveling-wave probe interacting
with three-level atoms. Moreover, we have analyzed a number of
coherent transient processes in which the DAP can be put to effective
use, An interesting duality between the DAP and BAP approaches
has been cdiscovered (e.g., optical notation in the BAP corresponds
to free-induction decay in the DAP)., A detailed comparison of the
various advantages and disadvantages of the DAP is contained in cur

work.(lZ)

6. Previous Work

Articles related t»> our past work on coherences produced by

(13)*, (14) *

radiative collisions, strong-field effects in radiative

(15)*

collisions using a model potential, collisionally aided radiative

PRI




excitation in three-level systems,

three-level systems,

(16)*

resonance fluorescence in

17)* (18)*,(19)*

as well as two review articles

have either appeared or are awaiting publication,

1.
2.
3.
4.

5.

6.

7.

8.

9.

10.

11,
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Analytic solutions to the two-state problem for a class of coupling potentials

A. Bambini
Research Institute for Theoretical Physics, University of Helsinki, Siltavuorenpenger 20C, SF 00170 Helsink: i 7, Finiand
and Istituto di Elettronica Quantistica del Consiglio Nazionale delle Ricerche, via Panciatichi 56/30, 1.50127 Florence, Italy*

P.R. Berman
Physics Department, New York University, 4 Washington Place, New York, New York 10003
(Received 22 December 1980)

A class of pulse functions is found for which analytic solutions to the problem of two levels coupled by these pulse
functions is obtained. The hyperbolic-sccant coupling pulse is included in this class of functions leading to the
Rosen-Zener solution, but all other pulses belonging to the class function are asymmetric. The asymmetric pulses
lead to qualitatively new features in the solutions; in general, it is impossible to have a zero-transition probability

with such asymmetric pulses.

. INTRODUCTION

A problem of considerable interest in physics is
to determine the time evolution of a two-level
system whoae levels are coupled by a time-depen-
dent potential. The probability amplitudes for
the two levels in the interaction representation de-
noted by a,(¢) and a,(¢), obey the coupled differen-
tial equations

da,/dt= «ix(t)e™“ta,, (3a)
da,/dt= =ix(t)e'“ta, , (1b)

where w is the frequency separation of levels 2
and 1 and x(¢) is the coupling parameter (assumed
real), By introducing a characteristic time scale
T and defining dimensionless parameters

T=t/T, (2a)

a=wl, (2b)

=8k, S= f.x(t)dt , (2¢)

f)=x(rT)T/8, (2d)
one can transform Eqs. (1) into

a,= -ipf(r)e*%a, , (3a)

a, = =iff(r)e'*"a, (3b)

where a dot indicates d/dr, Owing to Eqs. (2¢) and
(2d), the function £(r) is normalized as

[ sovar=s )

and the parameter S is the pulse area.

Equations (3) arise in any semiclassical two-
state calculation in which the two levels, sep~
arated in energy by 5a/T, are coupled by a poten-
tial %87(r)/T. These equations also arise in two-
state problems in which the levels are coupled by

23
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a nearly resonant oscillating field. In that case,
assuming the “antiresonant” component of the
field can be neglected, the quantity #8f(r)/T takes
on the role of an envelope function for the field
while a/T represents the atom-field detuning.
Since Eqs. (3) are of such fundamental importance
in mzny branches of physies, it is useful to have
analytic golutions of these equations for various
envelope functions f(r). Of course, one can nu-
merically integrate Eqs. (3), but such procedures
can be costly (especially for large o) and do not
necessarily yield the mors general qualitative
features of the solutions,

If a=0, a simple solution can be found for ar-
bitrary f(r), The probability amplitude a, or a, is
given by

a; = A, co86(t)+ B, 8ing (1), (5a)
o= [ firar, (5b)

where A; and B; are constants. For a+0, how-
ever, there are, to our knowledge, only two
smooth envelope functions f(r) for which an analy-
tic soluticn of Eqs, (3) has been obtained. One
such function is f(r)=const=1 for which the solu-
tion! is

a,,;=4, ;C080, ,T+B, ;8in0,,7, (6a)
0,2 =3[ 2 (@24 482)1/7], (6b)

It should be noted, however, that this envelope
function does not vanish at =31» implying that it
cannot represent a physical pulse of finite dura-
tion, The other function for which an analytic so-
lution of Eqs. (3) is known is f(r)=sechr. By
employing the change of variable

T
z=%f sech®r’dr’, W)

Rosen and Zener? were able to show that the gen-

2496 © 1981 The American Physical Society
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eral solution in this case could be given in terms
of hypergeometric functions.

It is the purpose of this nole to indicate that an-
alytic solutions to Eqs. (3) may be found for an
entire class of positive definite functions f(r).

The hyperbolic secant is included in this class of
functions as a special case, but the rest of the
functions are no! symmetric about any given 7.
This asymmetry leads to new features in the solu-
tions.

1. SOLUTION FOR A CLASS OF FUNCTIONS

Equations (3a) and (3b) may be combined to yield
the following second-order linear differential
equation for a,(r):

a,+(ia =} /o, +BYa,=0. (8)
The amplitude a, obeys a similar equation with
-a replacing @, In order to determine a class of

functions f(r) for which analytic solutions of Eq.
(8) exist, we introduce the change of variable

z=z(1)2 0, (9a)
subject to the restriction that z is real and that

2(=w)=0, (9b)

z(w)= 1,

the transformation z(t) changes the range of the
independent variable from (~=,=) to [0,1].

In terms of the variable z, one may write Eq. (8)
in the form

d )
) Ga=flp) s

al'+ I al+ T a,=0, {10)

where a prime indicates differentiation with re-
spect to z. The general idea is to see whether or
not Eq. (10) can be cast into the form of a standard
equation of mathematical physics. In this paper,
we determine the conditions under which Eq. (10)
becomes the hypergeometric equation®

z(1=z)ay + (Az+Blai+Da;=0, (11)
where

A= ~(a+b+1), (12a)

B=c, (12b)

D= =ab, (12¢c)

and a,b,c are the constants appearing in the hy-
pergeometric equation of standard form.® We
could determine equally well those conditions un-
der which Eq. (10) becomes a generalized hyper-
geometric equation (equation of gauss); however,
the hypergeometric equation is the only equation
of gauss that yields physical solutions which are

nonidentically zero at z=0 and 1.
By equating Eqs. (10) and (11), one may obtain

B¥?/(zR=D/z(1~2) (13)
and
t=iaz(1 ~z)/[(1+A)+(B-1)]. (14)

In order to have a one to one mapping of 7 onto

z, we require that z(r) is a monotonically in-
creasing function, implying that z is real and posi-
tive. This requirement used in conjunction with
Eqs. (13) and (14) implies the following restric-
tions:

A+ I=iad, A real (15a)
B-}miap, preal (15b)
>0, A/u>=1, (16)
D real, D>0, 17)

In terms of these new variables, Eqa. (3) take the
form

!
aj= _‘(.z_(ll.):a)‘ 'e-uv (o)a' , (18a)
!
aj= -i(-;(—ll-):-;'s)l ' eletllg | (18b)
Equation (10) becomes

z(1 =z)ay+[c = (a+ b+ 1)z]a} =aba,= 0 (19)
with

a=iaA[=1+ (1 ~4D/a?\3P/3)/2, (20a)
d=iar[=1-(1 =4D/a®\?p/%]/2, (20b)
c=i+iap, (20¢)
and Eq. (14) may be rewritten
p=z(l=2)/(p+i2). (21)
The general solution of Eq. (19) is*
a,=AF(a,b,c;2)

+A,2"F(e=c+1,b=c+1,2=c;2), (22)

where F(a,b,c;2) is the hypergeometric function,
and 4, and A, are integration constants, The time
variable 7 as a function of z may be obtained by
integrating Eq. (21); one finds

r=lnfz4 /(1 =2 P2]. (23)

The upper-state amplitude may now be calculated
by combining Eqs. (23), (18), (20), and (12c) to
give

ag=i(~10)/%25(1 =2 )"0+ g] . (24)

By differentiating Eq. (22) and using some simple
properties of F functions,’ one finds

0 S v
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a,=i(=ab)/3{(ab/c)2°F(c =a,c =b,1+c32)4,

+(1=c)1 =z F(aac+l,bec+1,1=c;2)4,].

(25)

The constant A, and A, appearing in Eqs. (22) and (25) may be evaluated by imposing initial conditions
a,(z=0) and a,(z=0), In terms of a,(0) and a,(0), Eqs. (22) and (25) become

z(—ab) /3,1

a,(z)=F(a,b,c;z)a,(0) = 1o

/3,0
a,(z)= -ﬂ:%!:"—F(c -a,c-b,1+c;z)a,(0)

+(1 =2} E(gmctl,b=c+1,1 =c;2)a,(0),

Fla=c+1,b~c+1,2=c;2)a,(0), (26a)

which together with Eqs. (20), (12¢), (13), and (21) provide a complete solution to the problem.

11l NATURL OF THE PULSE

In this section, we describe the pulse shapes
for which the solution (26) is valid and in Sec. IV,
we present an analysis of the solution in light of
these pulse shapes. The pulse shape P(t), as de-
fined by

P@)= B/T)f(r), ==¢/T, t))

is obtained {rom Eqs. (13), (21), (4), (23), and
{2¢) to be
Pl S =0

1+az !

t=T ln[z /(1 =2)%], (28b)

where S is the pulse area defined in Eq. (2c), In
arriving at Eq. (28), we used the normalization
condition (4) to obtain

(28a)

D=pt=St/xd (29)
and set
p=l (30)

without loss of generality.

The pulse is characterized by its area S, its
time-scale parameter 7', and the parameter
A(=1<A<=), Various properties of the pulse may
now be listed as follows:

Pulse amplitude. 'The pulse maximum A, oc-
curring at

Zagg=1/(241), (31a)
taa=T{M In(24 1) = (14 A) In(142)], (31b)
is given by
S 1
Ao‘ﬁ W . (32)

Pulse area. The pulse area is [% P(f)dt=S.
Pulse asymmelry. For any value A#0, the
pulse is not symmetric. Defining

(26b)
tmax o
P=| “ppyat, = [ PW)a, (33)
j'" ' j"ulx
and an asymmetry parameter
P, =P
A ne—teees, P ry- 3l (34)
one can use Eqs. (28a), (21), and (31a) to obtain
A=la(4/n)tan(1/(1+ AN/3], (35)

As ) varies from =1 to 0 to ©, A varies from -1
toOtol.

If A=0, A=0 and the pulse is symmetric. In this
limit one obtains from Eqs. (28) and (21)

P(t)= (S/2nT)sech(t/2T), (36)
z=dz/dr=}sech’(t/2T), (37

which corresponds to both the pulse and transfor-
mation (Eq. (7)] used to arrive at the Rosen-Zener
solution.

Pulse width. To find the full width at halt maxi-
mum (FWHM) of the pulse, we seek those values
of z, labeled z,,,, for which P(z)=4A, and then
calculate the corresponding ¢,,, values using Eq.
(28b). From Egs. (32) and (28a), it follows that
z,,, may be obtained as a solution to

1 _[lex(l “zll:)]”a
41+ Ap/2 ledrz,,, ’

which yields values
824V (142)
A2 160416

Using Eqs. (38) and (28b) one can evaluate the
FWHM in ¢ space as

L (T84 4T (14 )\
""W““‘T[”‘('m 8=4y3(1+ 1))
A+8 -4\/?)]

“‘**"“(m

(38)

2372

(39)
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TABLE 1. Pulse characteristics.

Amplitude * Asymmetry
Ay toadT " FWHM HAW Comments
A=-l+e 1 -¢(1+1ne) 4e 19.1€7 T In2 Most pulse
(0<e«xl) 2/e P area for
£ <ty
A=) i 0 521 w Symmetric,
hyperbolic-
secant pulse
Ax»1l 1 1=InA 19.1T AT In2 Most pulse
2 ~ area for
£ taar

n units of (§/2T).

Half-area width (HAW), Another useful param-
eter is the HAW defined as
MHAW' ltll = tax I ’
where ¢y i8 the time defined such that half the
pulse area lies between ¢, and ¢,,,. Setting
4
gs=2 [ " P(t)at
(7]
and using Eqs. (28a), (21), (81a), (28b), and (31b),
one may obtain

il ¥ -in 2| (a0

Aty T

where
1={1+ A2
el o)

For symmetric pulses the HAW is infinite since
half of the pulse area lies between ¢ = =~ and
t=l,,- However, for very asymmetric pulses
(Aw~1 or 1), the HAW i8 a characteristic long-
time scale pulse width,

The pulse properties are summarized in Table
Ifor A= =1l+¢€(0<€<«<1), A=0, and \>>1, For
A= «l+ ¢ or A>> 1 the pulses are very agsymmetric,
containing narrow central peaks and long tails ex-
tending out toward ¢= == and =+ «, respectively.
The case A=0 represents the symmetric hyper-
bolic secant pulse, Less extreme pulse asymme-

tries are represented in Fig. 1 where pulse shapes
P(t}(xT/S) are drawn for A= -0.8, A=0, and A=5,

IV. NATURE OF THE SOLUTION

The general solution for the state amplitudes is
given by Eqs. (26) along with Eqs. (20), (12¢),
(13), and (21); the class of pulse envelope func-
tions f(r) for which this solution is valid has been

described in the previous section. Although Egs.
(26) could be used to determine the transient re-
sponse to a pulse, we consider only the transition
probability induced by the pulse, That is, we take
as initial conditions

a,(t= =»)=qa,(z=0)=1,

a,( = =o)=q,(2=0)=0, (41)
and calculate the probability
Py |ayt==)|*= |aye = 1)]? (42)

that the atom has been excited by the pulse, Set-
ting z=1 on the rhs of Eq. (26b) and using Eq. (41),
we find

P,z-'ﬁ‘%l—, |Flc -a,c =b,1+c;1)|?

- labl |[T(1+c)T(1 =c+a+d) |t
lcl*] T+a'(1+d) !

(43)

P{t): {#T/S)

/T

FIG. 1. Graphs of the pulse function P{t)(xT/S) ver-
sus ¢ /T for A= -0.8, A=0 (hyperbolic secant), and
A=5,

|
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where I is the gamma function® By substituting
the values for a,b,c from Eqgs. (20) into Eq. (43)
and using some elementary properties of the
gamma functions,’ one may obtain the transition
probability

P,=[sinh? + 8in3(S? - 82)!/2] sech(ra) sech(ra + 28) ,
(44)

where S is the pulse area (2¢) and
S=nar/2 (-1a/2<8<=), (45)

As a function of S, P, increases until S=|8| and
then oscillates between sech(ra)sech{ra+ 23)
(sinh®8) and sech(ra)sech(va + 28) (cosh?s),
Whereas the pulse was characterized by the pa-
rameters T, S, and A, the transition probability
is a function of the detuning parameter a=wT,
the pulse area S, and the quantity 5= rar/2 which
reflects the pulse asymmetry through Eq. (35).
We now examine the nature of the solution (44)
for several specific cases in light of the pulse
structure described in the previous section.

a=0, For zero detuning, the solution (44) re-
duces to the well-known solution [see Eq. (5)]

P, =sin's, (46)

8= 0, For a arbitrary and 5=0, one must
have A= 0, The pulse is the hyperbolic secant
given in Eq. (36) and Eq. (44) becomes

P,=8in'Ssechira , 47
which is the Rosen-Zener solution.?

Both solutions (46) and (47) are of the form P,

= |¥(a,5)8inS/5|?, where F(a,S) is the Fourier
transform of the pulse evaluated ai frequency a /T,
Rosen and Zener conjectured that this result will
be valid for arbitrary smooth pulses. Fo, asym-
metric pulses, the general solution (44) clearly
violates this conjecture. Moreover, even for sym-
metric smooth pulses, one can show that the con-
jecture is false by numerically integrating Eqs.

a: 0.00t

FIG. 2, Graph of the transition probability P, as a
function of pulse area S for o =0.001 and 6 =0 (A=0),
6=1 (A=637), and 6=3 (A =1910).

(1). However, numerical calculations using Lor-
entzian and Gaussian pulses do seem to indicate
that, for symmetric pulses, there is an oscillatory
behavior of P, as a function of S, and there are
values of the pulse area S for which P,=0, In
contrast to this result, the result for asymmaetric
pulses and nonzero detuning 6+ 0 always yields
P,> 0 regardless of the value of S,

ra<1, 8 2 1, This limit implies that

Ax28/ma>» 1

which is an asymmetric pulse of amplitude 1/2VX,
FWHM 10,17, and HAW AT In2 (Table I). The cor-
responding transition probability (44) is given by

P,=(8inh? + gin?(S® =8%)}/3] sech2s . (48)

The solution is graphed as a function of S for
a=0,001 and two non-zero values of § in Fig, 2
along with the corresponding &= 0 solution [Eq.
(47)] for the hyperbolic-secant pulse. One notes
that P, oscillates as a function of S about its sa-
turation value of 4 and that the oscillation ampli-
tude decreases with increasing 0 (increasing A),
With increasing 6, it is the central peak region
that is providing the major contribution to the tran-
sition probability since the pulse wing is becoming
increasingly adiabatic [i.e., af,,, (@/T)> 1—gee
Table I]. The sharply asymmetric nature of the
central peak cannot give rise to the zero-transition
probability effect (i.e., P,=0 for $#0) that oc-
curs with symmetric pulses, Even though the peak
amplitude decreases as A"1/2, the transition prob-
ability from the central peak region still leads to
saturation behavior for $> 3.

raxl, d=(ra/2)(=1+¢)(0<era< 1), This Uimit
implies A= ~1+€(€<< 1) which is an asymmetric
pulse of amplitude 1/2V€, FWHM 19.1¢T, and
HAW TIn2. The transition probability is given by

P=[sinh¥(na/2)+ 8in?(S? ~n%a2/4)/ 2| gechna . (49)

and is plotted in Fig. 3 for a=%, ¢=0,001 along
with the corresponding P, for the 8=0 hyperbolic-

1t —a*1/3  ----a=2

FIG. 3, Graph of P, versus S for a =4, §=0 A=0),
a=4, 6= -0,528 (A= ~1+0,001), anda =2, §=-3,138
= ~1+0.0011),

bty e A e

iy




S

S S B e

AT e s R TR i O

Bz 4 o RO
TR

23 ANALYTIC SOLUTIONS TO THE TWO.STATE PROBLEM FOR A... 2501

secant pulse. A graph of P, versus § for a=2,
€=0,0011 is also drawn (the corresponding hyper-
bolic-secant solution has amplitude 1,4 x 107)
showing its similarity to the =3 curve of Fig. 2.

These graphs are explained by the fact that the
hyperbolic~-secant pulse is “semiadiabatic” (a=~1),
and becomes increasingly adiabatic with increas-
ing a (with a corresponding decrease of P,), In
contrast, the ceniral peak region of the asymme-
tric pulse is always sudden with respect to 1/a.
It is true that the long~tail region of the asymme-
tric pulse is also “semiadiabatic” {al,u(a/T)=1]
and this tail gives rise to the oscillations in P,.
However, for a2 2 the central asymmetric region
dominates the contribution to P, and a saturation
behavior similar to the =3 curve of Fig, 1 re-
sults.

rasl, §>>1, This limit corresponds to the
asymmetric pulse with A>> 1, amplitude 1/2VX,
FWHM 1917, and HAWAT In2. The transition
probability is given by

P,=}(8%/b)sechra e™, S3< &
=} gechra g™, §¥z 8%,

(50)

Only the central peak contributes to P, since the
HAW wing is adiabatic for a detuning na=z1 [i.e.,
7(a/T)* Afy,w>> 1), Thus, the probability is much
less than that in the corresponding hyperbolic-
gecant case (47), except when the pulse area S is
strong enough to have the central peak region of
the A>> 1 pulse saturate P,.

ra>1, 6= (ra/2)(~1+¢), €ra=x1l, This limit
corresponds to the asymmetric pulse A= <l+¢
(0<e€<< 1) having amplitude 1/2Ve€, FWHM 19.1¢T,
and HAW T In2, The transition probability is given
by

2
P,=%e"“‘sech(na<), S« 8|

=4 e gech(nrae), Sz 82, (51)

The central peak of the pulse is “semisudden”
{ema=1) and gives rise to the major contribution
to P,. As in the previous case, for large enough
S, the pulse is strong enough to lead to saturation

behavior. The *ransition probability for this case
is larger than that for the corresponding hyper-
bolic-secant pulse since the hyperbolic-secant
pulse is adiabatic for a detuning ma>> 1,

ma>1, 26+ma>1, |§]> 1, This adiabatic
limit can apply to a wide variety of pulses. The
transition probability is given by

Pz=(sg/lbl)e-ztaez(lﬂ-ﬂ, $§3«] 6|
zeaagalOI), g25 83 (140) (52)

and
P=43gin’Se™* (A=0). (53)

The entire pulse is adiabatic for the conditions
given, but the central portions of the asymmetric
pulse can still provide the major contribution

to the transition probability. The transition prob=
ability for the asymmetric pulse does not oscillate
as a function of S in contrast to that for the A=0
(hyperbolic-gsecant pulse). (Actually there is an
oscillatory term in P, even for the asymmetric
case, but its amplitude relative to the background
term is negligible.)

To summarize, we have found a new class of
functions for which analytic solutions of the two-
state problem may be obtained. These positive
definite pulses vanish at t= 1%, With the exception
of the hyperbolic-gecant pulse which is a member
of this class of functions, the pulses are asym-
metric, For the asymmetric pulses, the transi-
tion probability does not vanish for any pulse area
5> 0 (provided a# 0), a result that differs from
the corresponding calculation for symmetric
pulses.
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The: i)roi)li.m of a two-Jevel system coupled by an |

cxh.rn.:l fi eld has a long history in physics, dntmg
bacl\ 16 the 1930's.1 Ongmally motivated by in-

. vesngatmus on atoms in magnetic fields, theories of |

such,."yslcms have more recently been applied to
laser-related problems.’

Lét:ay,ay be the amplitudes of the two states.
We assume that the coupling potential connecting
the tWo states is of variatle amphludc and central
ﬁcqucncy £, so that, in the rotating wave approxi-
mation; the time-dependent Schrddinger equation
becomes a pair of cotipled equations for a;,a;:

igj=srie®, (1a)
idy=Vitle %%, (1b)

Heve A is the detuning of Q from the atomic fre-
quency. We work in a system of units where fi=1.
For the case where ¥ is a constant in time, the
solutidii for initial conditions a;=0, a;=1 at t=0

is
. ~iV ; .
aj= me 8 sin[(AY4+ VAV
This is the Rabi problem. For this to be

relevant, the approximation that the rise time of
the fivld is much shorter than other characteristic
times shou!d be & good one. Jn their paper, Rosen
and Zeneir® considered a case where this sudden ap-
proximation was not valid. They were mativated
by a scrious discrepancy between results of the
sudden-approximation theory and experiment.
They analyzed the ¢ffeet of a smoothly varying
pulse, choosing a hypetbolic sceant because of the
exactly solvable nature of the cquations that resnit
from such a time dependence. For the hyperbolic

R
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secant pulsc, one may make a change of variable
that transforms the equation of motion into the hy- ;
pergcometric equation. Robiscoe® has shown how !
to generalize this to the case of decaying states,
Recently, Bambini and Berman® have gong
beyond the Rosen-Zener problem. They show that
there is an entire class of envelope functions that
may te mapped into the hypergeometric equation, .
of which the hyperbolic secant pulse is merely one
member, All ¥(¢} in the family, other than the
hyperbolic secant, are asymmetric in time, i.c., !
V)£V (—1). Bambini and Bennan show that for
these asymmelric pulses, there is no case, apart
from exact resonance, where there is a nonvanish.
ing tiansition probability, a striking and surprising

In the case of the Rabi problem, on the other
hand, for any given detuning, there are always
values of the pulse area for which the amplitude a,
returns to zero. In the Rosen-Zener case, the am-
plitude a;(+ ) goes like (sind )/, where A4 is the
pulse ares, so thaut here too, once the hyperbolic
sccant envelope function is specified, one can find
values of the area of the pulse for which a(-+ w0)
vanishes. Similar remarks hold} for other symi-
metric potentials, where solutious have been ob-
tained with computers.®” It is a most remarkable
feature of the Bambini-Berman problem that it ad-
niits no asymmetric eavelopes for A:£0 with a
nonvanishing transition probability. That is, it as-
serts that for asynunetric pulses of the form stu-
dicd, if the amplitudes ay =1 and a, =0 at

= o, then at time £ = 4 co, the probabi!®y for
finding the system in state 1 is nonvanishing, i.c.,
there will alway s be some population in state 1 for
this class of off-resonant asymmetric pulse. No

.
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transforms Eq. (3a) via the substitution

* into an cquation with the first derivative missing, .

previous prediction of this kind of behavior scems
extant in the literature, It should be understood
that only envelopes of a single algebraic sign are
being considered, so that, for example, pulses that
are completely antisymmetric in time are excluded
from this discussion, ..
Bambini and Berman® reach their conclusion by
obtaining a complete analytic solution to their
problem. Since most pulse shapes do not admit of

. closed form solutions, it is of interest to inquire

whether the nonvanishing of transtion probabilitics
holds for other smooth, asymmetric pulses and
wheilier this property can be demonstrated in a
general way, i.e., through the structure of the cqua-
tions of motion. It is to this question that we ad-
dress the present work.

Equations (1) may be put in the form of uncou-
pled second-order cquations,

dy=(V/V +iAY6, + V30, =0, (22)
Gy—(V/V—ibYiy 4 Viay=0. b
0 ' -
Defining z= [ f)de’~5,with A= [ v
and f=V./A. Lqs. (2) becom., in the z plane,
a.—-i7-a|+/t a;=0, 3a)
ﬁz+f'§‘a2,-l'/1202=0. . (3b)

.

" We assume, with Bamtini and Lerman,® that £(1)

does not change sign, so that the transformation,
which diflers from theirs, is single valued. If one

b=a, exp|( —-IA/?.!{, dz2'/f (z')]na,c""ﬁ',

we l'ave
"
= | AL AL e :
g |t e = L 42 1) =0 YK
b+ 4t t o +A° b , (3a)
=V A2 A ) .
=b+ [T = o=t (36"

Eq. (3b') resembles a onc-dimensional, time-
independent Schrddinger equation for a particle of
mass 5 moving in the complea “potential™

A s
V=—[4'l 3 ]f" .

where £ has been set == 1,
This cquation is (o be solved e-ulv’ccl to the ini-

tial conditions that b =0 at 2 = — -5, If the

dynamics of the problem permitp a transition pro-
bability of zero for certain pulse arcas, this means
b(z = + 5) also vanishes for those values of A, In
short, we must solve an cigenvalue problem and
find those valucs of A* for which the solutions of
Eq. (31') vanish at z = j;-;—. Now for physical
pulses, only real envelopes exist. For thesg A is
real and positive. If none of the cigenvalug A2
meets this criterion, A will have an imaginary part
for all the cigenfunctions of Eq. (3b"), and none will
correspond to a system driven by an actual pulse,
i.c., there will be no physically meaningful pulse
arcas for which the system undergoes a transition
probability of zero. In the following, we shall as.
sume a nonvanishing detuning. Note that the case
of exact resonance is entirely equivalent to the cle-
mentary quantum mechanical problem of a particle
'in a Lox, whose cigenvalues A% are 0272 In this
way, we confirm the simple result that the transi-
tion probubility vanishcs for pulse arcas that are in-
tegral multiples of =, if A=0.

We should comment that if one constructs an
asymmetric potential from two temporally distinct
symmectric pulses, one can, by making cach o the
component pulses produce a net transitions ampli-
tude of zcro, cause the overall probability to van-
ish. To force the components to be exactly nono-
verlapping ir time requires that they be sharply cut
off. Thus, tlese pulses do not conform to the
smoothncss criterion of Bambini and Berman.?

. We consider now pulses where the imaginary
term is present. We examine first the case of sym-
metric pulscs. Let A? be a typicaly cigenvalue, 1f

G
e onans msmie brsmme J

we replace the imaginary term by its negative, then

the resulting cquation will have 4?* for its cigen-

value. Now, since f(z) is symmectric in 2, f'(2) will |

be antisymmetric. Thercfore, the transformation
Z—s»—z reverses the sign of the imaginary term on

the left-hand side of Eq. (3b"), but leaves the cigen-

value unchanged. Immediately, 42:=4%, i.c., all
the cigenvalues are real, althougli meesim not neces-
sarily larger than zero. For asymmetric pulses, the
trasfrmation z.-» —z docs not reproduce the
complex-conjugate cquation, and 42 will not, in
general, be the same as A%, This does not abso-
lutcly rule out the possibility thit for particular
J(1) and detiming, one might have one or more
real and positive cigenvadues, but demonstrates thai
it could occur only by accident. We shall show in
the following that the conditions that must reces-
sarily be fullliled for 42 1o be real for asymmetric
pulses aresseverely overdetermined.

To procecd, we will analysze the problem from a



perturbative viewpoint, and assume that the entire
perturbation expansion can be summed, We do not
restrict oursclves to the first few terms, but study |
the parity-related properties of the full series. We
take the zero-order problem to be

B. Il A!

4] 413

This is Hermitian and identical to a time-
independent Schrddinger equation, which has only
real cigenvalues. The imaginzry term —iAf'/2/f?
is to' be considered as a perturbation,

We wish to contrast the case of symmdic and
asymmctric pulse envelopes, Assume f(/) to be
symmctric—f (2) is also symmefic. (If £(1) were
not symmetric abowt £ =0, f(2) would lack sym-
metry about its origin.) For this case, the unper-
turbed cigenfunction by has definite parity, and the |
perturbation —iAS*/f? is odd under reflection. It
follows dircetly that if one writes a perturbation
series for A2 as an expansion in the usual way, con-.
tribution’s from odd powers of the “strength™ of the
“interaction” will be absent. Since only the even
orders survive, and the strength parameter is pure-
ly imaginary, the resulting 2igenvatues will be real.

!
?

bo */’gbo . (4)

ot

[

- eem e -

1//2 nor f*//* will be operators of definite parity,
nor will unperturbed solutions b, possess well-

" defined inversion propertics. Hence, both cven and

)
J
H
)
If thie potentisd V(1) is not symmetric neither '
¢ 3/
]
]
]
!

odd terms in the perturbation xpansion will be

- present, and the cigenvalues A2 will all be complex, |
I

unless there is a case where, for a specific detuning,
the odd powers of the expansion sun to zero, 1
The latter is an extremely unlikely cir-
cumstanccp. Equations (31') is of the form ;
" .

- /] A
b- Lw#f&

b=A%.. (5)

/2

We require not only that the odd powers sum to
zero, but that they do so for a value of A that is ex-
actly the square root of 1. We cannot quite ¢x-
clude this possibility, but it is evidently highly
overdctermined. ;

To summarize, we have shown that the result
obtained for particular asymmetric pulses by Bam- !
bini and Berman,® namcly that there are no non-
resonant cases for which the transition probability
vanishes, is the normal conscquence of the general
structure of the equations of motion, and applics,
apart from some remotely possible aceidental cases,
to all smoothly varying, asymmetric pulses which
possess envelopes of a single algebraic sign.

The author is grateflu! to 'rofessor P. R. Bermizan
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copy of the Bambini-Berpyan manuscrint prior ¢
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NOBLE GAS INDUCED RELAXATION OF THE Li 35-3P TRANSITION SPANNING THE SHORT
TERM IMPACT REGIVE TO THE LONG TERM ASSYMPTOTIC REGIME

T. W. Mossherg,* R. ¥achru,* T. J. Chen, S. R. Hartmann
Columbia Radiation Laboratory, Dept. of Physics
Columbia University, New York, NY 10027
and
P. R. Berman
Department of Physics, New York University
4 Washington Place, New York, WY 10003

Photon echoes have a doppler free character which allows one to study
relaxation processes which would otherwise be hidden in the 1nh9mogen?ously
broadened spectral.profile. It has recently been shown, for example, that
contrary to expection, a vadiating atom in a lincar superposition of dis-
similar elcctronic states can undergo identifiable velocity changing col-
lisions [1]. Studies of this nature require an cxamination of the sub-
doppler region of the spectral line shape. The eoffect manifests itself,
in the case of photon cchoes, in a dependence of the effective relaxation
cross section Og.¢¢ on the excitation pulse separation 1. In this paper we
report measurements in Li vapor where t can be increased into the regime
where o,¢¢ once again becomes <dndependent of 1, 1In the limit 1=0 we mea-
sure oo which is the phase changing cross section as calculated by Baranger (2
while in the large 1 limit we measure o, the average total scattering cross
section of the ground and the excited states. Our data at intermediate
values of 1 is used to determine the form of the scattering kernel and the
average velocity change per collision., These measurements are for the
25-2P superposition states in atomic Li perturbed by each of the noble
gases,  For He perturbers the scattering Fernel is found to be Lorentzian,
for the other perturbers it is Gaussian,

We use a N laser pumped dye laser to generate a 4.5 nsec light pulse
at the 6708 & 25-2Py/9 transition of 7Li. The pulse which has a 6 GHz
spectral width is attenuated, split, delayed an amount T, recombined, and
directed into a cell, whose effective length is 10 ecm, at 525 + 159K
containing the Li vapor (at ~10-6 torr). For short values of t the polar-
izations of the photen echo excitation nulses were orthogonal in order to
reduce the effects of detector saturation which arose because of the non
instantaneous response the Pockels cell shutters used for their protection.

For a superposition state relaxing at an effective rate Toff=nv ogaff
where n is the perturber demsity, v is the average relative velocity of the
collision partners and oorf is an effective cross section, the corresponding
echo intensity will decay according to

T = Tpexp(-4T . .7) (L
and since Pegg varies linearly with perturber pressure P
1(P") = 1(0)exp(-BP) (2)

where the constant B, which we measure directly, is characteristic of the
perturber and the collision process. We deternine £ at several discrete

Supported by the U-S-XO‘SC;? 2‘0'5:;‘;3‘ Recearch Reproduction in whole or in part is permitted :
under Contract No. NOUQL4-77--Ua93. for any purpose of the United States Government, 2
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values of T by measuring the echo intensity as a function of the perturber
gas pressure. The value of Og¢y is obtained from

Ours = r ff/ = BP/4nvt. (3)

Fig. 1 Plot of oeff(r) versus T, Frror bars represent statistical uncertainty.

In fig. (1) we summerize our work by plotting all measured values of
as a function of 1. A dependence on t arises because each collision
o? the Li atom with a perturber gives rise to a velocity change in addition
to a phase change of the Li superposition state., If only phase changing
collisions occured 0,¢¢ would be independent of 1. Velocity changing col-
lisions have a delayed effect which manifests itself in a dependence of
Oeff ON T. Our data indicates that at the shortest values of T Ogrf in-

creases at a large and relatively constant rate while at higher t it
levels off considerably.

Echoes 1in the optical regime (photon cchoes) are gencrally formed in a
volume large compared to the wavelength of the optical transition. Thus
any atom experiencing a velocity change sufficient to displace it an ap-
preciable fraction of a wavelength from the position it would otherwise
have taken in the phased array which radiates the echowill 1ot necessarily
reinforce the echo signal. As 1 is increased the resulting displacement
increases and the effect of a particular velocity change is cnhanced. This
proceeds up to a point that being when t is so large that all atoms experi-
encing a velocity change are effectively eliminated from the echo formation

processes. The data of fig. (1) at large t shows this effect clearly in
the weakening dependence of oypp on T.
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In what may be called the collision kernel approximation Flusberg [3]
has shown that Og¢f may be expressed as

1
Ougs ™ g *+ 0, [1-(1/T) £ dt g(kt)] | (4)
vhere OO(OV) is the phase changing (velocity changing) cross section and
[
g(kt) = [ exp(iktlv) g(Av) &(bv). (5)
-0

The collision kernel g(4v) gives the probability of a particular change Av
in the component of the velocity along the laser pulse direction.  For
kt << 1
1,22 2
Oupg ™ Op + 0, ¢ KT <> (6)

where <Av2> is the second moment of the collision kernel., For k1 >> 1

‘

g = % * 9 [1 - wg(0)/2kT) ¢))
where g(0) is the amplitude of the collision kernel at 4v = 0,

Our data at short T does net fit (6) well, shorter excitation pulses
would have been required to enter the regime where this approximation is
valid. Our data does suffice however to usec (6) to estimate og and we
find that except for He we agree to within a few percent with measurements
of 0gp made from line broadening experiments [4]. Our estimate of og for
He runs ~10% high.

The solid line curves of fig. (1) were obtained using an explicit form
of the collision kernel. For all perturbers except He we have used a
gaussian kernel
2,2
g(av) = (LW uo)exp(~Av /uo) (8)

while for He we have used the Lorentzian kernel

g(av) = (uoln)/(u% + sz). 9

We vary ug and g, to obtain the best fit. All relevant parameters are
tabulated in table I.

Table 1

Perturber % o, om==oo+ov L ow==00+ov (from fig.2)
He 99 82 49 8% 148 X% 247 cm/sec 146

Ne 101 47 148 1140 146

Ar 181 145 326 1400 338

Kr 206 170 376 1320 356

Xe 233 200 434 1320 434

An alternative proceedure for presenting our dala is to plot o .1 as
a function of 1, see fig. (2), in which case we expect that from ?gg
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Ofs = (oo + GV)T -0, g (0)/2k (10)

Fig. 2 Oosg" plotted versus T.

and we should obtain an assumptotic fit to a straight line whose slope
yields Og + 0O, = O, and whose negative intercept yields the product of 9,
with g(0). The values of 0g+0, = 0x so obtained are compared with that
calculated from the data of table I,

Supported financially by the U.S. Office of Naval Research (Contracts
N00014-78-C~517 and N00014-77-C-0553) and by th2 U.S. Joint Services
Electronics Program (Contract DAAG29-79-C-0079).
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Semiclassical picture of depolarizing collisions: Application to collisional studies using laser
spectroscopy '

. J.-L. Le Gouit
/“ Laboratoire Ayiné Cotton, ® Centre National de la Recherche Scientifique, Bdt. 505, 91405 Orsa, y-Cedex, France

) P. R, Berman e
Physies Department, New York University, 4 Washingion Place, New York, New York 10003 .
{Received 2 April 1981)

An c.\:g-nsion of the Jeffreys-Wentzel-K ramers-Brillouin approximation to inelastic processes is used to obtain the
scattering amphtude which describes the colhsionally iirduced depolarization of magnetic substate coherences. It is
found that the scattening ampliudes contain contributions from two overlapping regions. For large interatomic
separations, the different Zeeman sublevels are shifted and mixed by collisions but follow a conunon collision
trajectory. For small interatomic separations, it is possible to find adiabutic eigenstates which follow distinet
collision trajectories. The theory is used to investigate the nature of the depolarizing collision kernels and rates
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7’ PACS numbers: 34,70, 4- n, 32.70.J2, 42.62.Gv

1. INTRODUCTION |

WS A Y et e

Laser saturation spectroscopy experiments are
beginning to provide an important probe of col-
lisional processes occuring in low pressure
gases.! The elimination of the broad Doppler
background encountered in standard spectroscr py
permits a more sensitive measure of the manrer
in which collisions perturb the encrgy le\'cls and
alter the velocity of atoms,

A particularly interesting process that may be
studied in such experiments is the way in which
collisions nerturb superposition states in atoms
3 that have been created by an atoia-field interac-
§ tion. Since the various internal states comprising

the superposition state are generally shifted and
scaltered differently in a collisicn, one is led to
a somewhat complicated description of the entire

T AL AR ) A o S

S diimea e
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] scattering process for the supernosition state,
: 3 especially if collisions can also couple the super-
b position levels. Formal theories’*® have been

A

developed to describe the scattering and time
evolution of atomic superposition states via a
quantum-mechanical transport ejuation, but lit-
ile progress has been made in obtaining solu-
tions or physical interpretations of the results,
1t is the purpose of this paper tc provide a sim-
plification of the transport equation and some :
additional physical insight into the scattering pro-
cess, Methods of semiclissical scattering theory
are used to achieve these goals. i
The specific problem we choose {o study in- .

volves the scattering of atoms prepared in a linear
superposition of magnetic substales of a level
characterized by internal-angular-momentum
quantum nember j. ‘the way n which collisions
couple, shift, and scatter the vaitous magnetic

Supporled by the U.S. Ofiice of Nu: ! Research

under Conlract Ho. 160014-77-C-02l3,

b
b

which enter into the anaiysis of laser spectrosocpy experiments.

[

substates is investigated, Coherent superposi-
tions of magnetic substates (magnetic moments,
Zeeman coherences) are conveniently created and
probed using the “threa-level” system of Fig. 1.
The 1-2 transition is excited with a nearly mono-
chromatic laser beam and the 2.3 transition is
probed witi another colinear laser beam. Level

2 (shown for §=1) is (2j+1) fold degenerate; Zee-
man coherences within Jevel 2 may be produced .
and detected using a proper choice of the laser
beam polarizations, Owing to the Doppler effect,
the excitalion-detection scheme excites or probes
only those atowms having a specilic velocity com-
ponent along the laser beam direction. Thus.

any collision-induced modification of the Zeeman
coherences for atoms having a specifie longitudinal
velocily can be moniwcred in such a system. The
Zeeman coherences tend to be desureyed by ine
separable contributions from collisional effects

on the internal (shifting and mixing of magnetic
sublevels) and external (state-dependent scattering
for the differ. nt magnetic sublevels) atomic de-
grees of freedom. In such experiments, the col-
lisional relax:tion is determined by the number

of collisions per lifetime of the level under con-

2

FIG. 1. “Three-level” scheme for depolarizing colli-
sion studies. Levels 1 and 4 are nopdegenerate, Lovel
2 has three substates which, though separatcdy indicated
fn the figurce, are assumed to Le cnergy degenrerate,
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sideration and the specific interatomic potential.

It should be noted thitt collisional depolarization
studies are not new., Optical pumping techniques
have been used to investigate depolarizing col-
lisions between optically oriented excited state
atoms and ground-state perturbers.,' However
the general nature of such optical pumping work
(broadband sources, total cross-section mea-
surements) does not lead to results that are overly
_sensitive to velocity-changing effects, Recent
laser saturation experiments® based on schemes
similar to that shown in Fig. 1 provide a more
sensitive measure of such effects,

In attempting to analyze the scattering process
for an atom in a linear superposition of magnetic
substates one is naturally led to examine the ap-
plicability of the classical pictures shown in Fig.
2. The first drawing represents the single-tra-
jectory limit, The dependence of the deflection
on internal state is negligible so that the internal

and those expressions are evaluated in the various
semiclassical limits discussed in Sec. II. In Sec,
IV we return to the problem encountered in laser
spectroscopy and examine the semiclassical limit
of the transport equation for atomic multipoles of
a degenerate level. A summary is given in Sec.
V.

1. APPROXIMATIONS IN INELASTIC
- SCATTERING THEORY

A few years ago, the development of research
in the fields of collisional rotational and vibra-
tional excitation of molecules,’® and of clectronie
excitation and charge transfer in atoms?® stimu-
lated efforts for obtaining a semiclassical descrip-
tion of inelastic collisions,* !® which should be,
by far, more tractable than a purely quantum ap-
proach, Since certain procedures in these theo-
ries are similar to those encountered in obtain-

o

N

s eSad And Sy BT,

3 and the transiational molions are decounled. The ing semiclassical limits of elastic scattering,
s‘;con‘d sl(;‘hem‘e‘:i?‘ictx; thl: v.it:nti;n \:)?(i)rz a:dia it Is useful to recal that two semiclassical ap-
24 p S & proximation schemes?” may be used to calculate

A

&

onal representation hus been found. Then each
sublevel obeys the rules of elastic scattering
along a’ substate-labeled trajectory. When none
of these extreme situations holds, is a classical
picture still possible? Answering this question
would help to complete the blanks in the third
drawing of Fig, 2, It should be noticed that the
existence of a classical picture is questionable
since depolarizing collisions imply @ coupling
between the internal motion, which is higlly quan-
tumlike due to the smallness of the electronic
angular momentum, and thegtransiational motion
which can be quasiclassical“." We shall discuss
applicability of the various limits and approxima«
tions in terms of standard treatments of collision
problems.

In See. Il various methods available for treating
inelastic scattering, when the de Broglie wave-
length of the colliding particle is much smaller
than the characteristic dimension of the interac-
tion region, are reviewed. In Sec, lIl exact equa-
tions for the scattering amplitudes are obtained

®|

* .
1O () (<)

FIG. 2. Schematlc representation of atomic trajec-
tories during a depolarizing collision, In (1) an atom
in a supcrposition state is scattered along a trajectory
common to the three substates which are mined by the
collision. In (b) a distinct trajectory 1s associuted with
each substate and no transition between substates is in-
duced by the collision, In (¢) the single-trajectory ap-
proximation is not valid and transitions are induced be-
tween substates: What trajectory does the atom follow?
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the elaslic scattering amplitude

f(o)=§i1,; @@ -npeosa, (i)

(where I is the magnitude of the atomic wave
vector and 3, is the phase shift of the J-labeled
partial wave),

(i) The first method is the semiclassical phase
shift approximation, which is valid when the de
Broglie wavelengthX is much smaller than the
distance of closest approach-y,. In this form of
the JWKB agproximation, each y, Is calculated
along a classical path which is characterized by
the initial velocity and the impact parameter
(1+1)/K. Although the 5, are calculated along
classical trajectories, the classical correspond«
ence, between scattering angle ¢ and impact parame-
eter is lost in Eq. (1) since a large range of ] .
values contribute to seattering at angle 6.

(i1) The second method, valid under the more
stringent concition VX « V7, is the classical tra-
jectory limit, The condition VX « {7, permits
one to retain in Eq. (1) only those ! values such
that the impact parameter (I1+1)/K corresponds
to classical scattering at angle 6. .

A number of papers have explored the conditions
for generalizing the J\WWKB approximation to in-
elastic processes® ! using an approach which
was initiated by Kemble.!® They have concluded
that such an extension is possible only when the
atomic (ransiational motion 1s nearly independent
of the internal states. In the case when the addi-
tional condition VX <<V7; is fulfilled, the JWKB
extension is thus possible only when atoms follow
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the same common spatial trajectory in any of the
coupled internal states as in Fig. 1(a). A com-
ptetely different approach has been developed
under the name of classical S-matrix theory by
Miller and Marcus,!:** They treat the internal
degrees of {reedom quasiclassically, retaining
onlv the interference properties of quantum me-
chanies, since they calculate scattering ampli-
tudes, In these papers there is no apparent con-
dition of common trajectory, A special mention
must be made to the work of Pechukas®® which
bypasses the common trajectory condition at the
expense of complications with a noncausal inter-
action, :

In light of these general methods let us examine
the depolarizing collision problem. A ground-
state spiniess particle, the pertrber, collides
with an atom having internal angular momentum
jo The magnitude of j is on the order of a few
I and s supposed to be much smaller than that
of the transiational angular momentum, Since
the collision is assumed to resuit only In a change
of direction of , the uther numbers which charac-
terize the internal state of the active atom are
Implicit., The effective interatomic potential is |
a function of the internuclear distance ¥ and of
the angle (F,)).

A classical S-matrix method!®-¥ seems very
tempting for solving the problem formulated in
this manner. With this approach, for given initial
and final values for the variables describing the
system (internal and interparticle angular mo-
mentpsy, energy), one calculates S-matrix ele-
ments classically along the trajectory comecting
these initial- and final-state values, A phase
.= [P+ df/% evaluated along U8 {rajectory s
assoaipted=with-cach-S-matzix-clcinent, enabling
one to account for any quantum interference effect
arising from contribution of several trajectories
to a given S-matvix element. The classical §
matrix has the advantage of eliminating the dis-
cussion about common trajectory for the various
magnetic substates since it is only the initial-
and final.state variables that determine the scat-
tering process. lowever the solution of the prob-
lem in the frame of classical mezhanics ic rather
difficult: the couple of colliding particles in the
center-of-mass system has 8 degrees of freedom
and after taking account of the conservation of[ﬂ .
of the total angular momentum J, of total energy
E, one is left with three differential equations,
two of which are coupled. In general these equa-
tions must be solved numerically,

If instead, we adopt a quantum-mechanical for-
muiation of the problem, certain simplifications
are possible. Since the interatomic potential de-
pends only on the quantum variable T and on the

ce - e emmm—

operator j- ¥, one immediately notes that, if the

“instantaneous” axis of quantization is taken along
¥, then the Hamiltonian is a function of T and i.‘
and commutes with f, (recall that {3‘;‘ II =0 since §
is the interatomic separation and ) acts in the
active-atom subspace), Thus using this basis,
known as the helicity representation after Jacob
and Wick,!® one concludes that the various mag-
netic sublevels in this regresentation are coupled
only Ly the rotation of the internuclear axis during
a collision. Two limiting cases may be envisioned:

(i) I the various instantaneous magnetic sub-
states experience approximatively the same col-
lisional interaction \the explicit condition is pre-
seribed in the next section), then the notionof a
common classical trajectory may be valid, The
coupling between magnetic substates induced by
the rotation of the internuclear axis can be sig-
nificant in this case since the “instantaneous"
eigenfrequencies differ by less than the inverse
duration of a collision (i.e.. the helicity repre-
sentation is nof an adizbatic one in this limit).
The coupling and scattering of the levels can be
calculated using a semiclassical phase-shift ap-
proach. One expects that the limit of nearly equal
collisional interaction for the different substates
is achieved for collisions with large impact pa-
rameters, '

(i) In the other extreme, one can imagine that
the helicity representation is an adiabatic one,
The various magnetic sublevels experience sig-
nificant]y different collisional interactions and
are scattered independently according to the equa-
tions of classical scattering theory. Normally,
one requires small internuclear separations to
achieve this adiabatic limit.?®

1t is the classical trajectory limit of these two
extreme situations which is illustrated in Figs,
Z(a) and 2(b). One might exnect that the range
of validity of the semiclassical picture could be
extended by combining these two approximations,
For example, in a given collision, limits (i) and
(ii) could be used for large and small internuclear
separations. respectively. The precise conditions
of validity of these different situations are exam-
ined in the next section,

1. CALCULATION OF THE SCATTERING
‘AMPLITUDE

The calculation is performed using the helicity
representiation which has been defined in the pre-
ceding section. During a collision, the : com-
ponent of the internal angular momentum changes
from an initial value 23 relative to a quantization
axis directed opposite to the initial velocity (i.e.,
in the direction of the interparticle separation
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T) to a final value M relative to a quantization
axis which is taken along the final direction 6qp.
The scattering amplitude takes the closed form??

-y
f};fb'(a.w-( ” Z<21+xxs o = Byye)

X ﬁvw(% 6y 0), (2)

where §,. is an S-matrix element and D?,.(¢, 6,0)
" is the rotation matrix of rank J. The internal
angular momentum }’and the relative orbital angu-
lar momentuin 1 have been coupled into the total
angular momentuin J and the summation is over
all allowed values of 3=T+i The S-matrix ele-
ments can be obtained in terms of the asymptotic
» form of the radial wave functions \P"(r) as (see
Appendix A)H 3

- gx.\

27 +1 .
t” % - - VIV
lim'l {r) = 3R (-1

L)
) O
/7 X [6.yrye KT = (= 1)*7sh. yet7),

This boundary condition selects appropriate solu-
tions of the radial equation
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which Is derived from the Schrddinger equation
(see Appendix A), In this equation, p is the re-
duced mass, and

vl = ("y( )+J(L+” )5.\':1'
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dfdr.

Except within a distance of a few 4 from the turn-
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equations may be s.mplified by using the condi-
tions that we have imposed at the beginning, From
A <7,, it follows that 9, ¢ @3,/ and since j«< J,
it follows that X}yl 28 @ )2 < 9,0/ li. Using
these two inequalities one may neglect the terms

i

i having rapidly varying phase factors in Eq. (9)
. and obtain
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)= gt b:v REY ___r_)fJ.L_l,.(buue«(o,,.,‘o 2 453y se 1 Crea1s9s40) .
)l 5 (b;x.‘e‘(olg-uoI_v) +b;-v_‘e°{(°‘m-l‘°,y)) .

where X, =2,(,00,(j,M)/r* and a prime indicatesj
(10) ;

ing points where 9, is close to zero, these “exact”

[ SO

where 1, () is the mteratonuc potential in sub-
state .\I .md

a.(.;.\l')=[JU+l)-.\1'(\I't P, »

In the absence of coupling between the ch.annels,

Eq. (4) reduces to 5 '\}"'tzl)
"

JI+1)
V) + W’l’)‘g'f (r)=0,

i _g’_ Ii°K?
(" 2pdr " oy (5)
The general solution of this equation in the JWKB
approximation is a linear combination of functions

etV PF where

J(]+l)

® = (h’l”- i% -2V, (r)) ,

Qu= [ Eare. (©)
This suggests that one tries solutions to Eq. (4)
- of the form
Yy
7 eﬂoiv
Lh ‘1’ (r)= b,.,(r) P“' l',q(»)—r/r (7? >

The standard theory of second-order differential
equations states that, In addition to the boundary
conditions, a supplementary condition is needed

to determine b},().** We ha\'e chosen the fullow-
ing condition: \

}—&"(b sye'%v bjyeRn)=0 8)
26,y

.

JueiQJy + b ve -y .

which transforms Eq. (4) into the set of first-order ;
differential equation

(9)
= ;A;v'b:v'o (11)
where
s . h
A‘VU' =% 2‘-(\’),,”?1”')1 F (vab.V’.Vol

+X;’lbyly Y )e.i(QJV' -OJ-”) .

Thus, the inward wave (represented by 6;,) is de- -
coupled from the outward wave (represented by
). This is the essence of the semiclassical ap-

o5
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proximation and can be considered as an expres-
sion of microscopic causality. However, the semi-
classical approximation requires, in addition,
-that a connection can be made between inward and
outward waves at the classical turning point. This
is accomplished provided one of the two following
-conditions is fulfilled!*:
(1) 1P,y =@y | <@,y +®,y,,. This condition per-

nits one o define a turning point, which is com-

mon to all the channels. When in addition \X «< V7, .

a common trajectory is available,

(1) [8,0 = €@ps 1> N7 /2(8,4,0,40)' 2. In this
case the Ay, in Eq. (11) are very rapidly varying
functions of y»» Thus the substates are not sig-
nificantly mixed by collisions and the biy are ap-
proximately constant, This decoupling corresponds
to the adiabatic approximation, t

These explicit requirements for a semiclassical
description, correspond, as expected, to the lim- .
iting situations that we have evoked in the pre-
vious section, In terms of the potential difference
butween the internal states, the above conditions
are, respectively, transformed into i

hvlr) - Yvu("‘j |« Py +@mu)z/2ll =E;, (12a) -
N

W l) = V()1 X0, i @)’

=E;. (xzb)_!

Condition (12a) requires that the difference be-
tween the scattering potentials for different mag-
netic substates be small enough fo allow for a !
“single-trajectory” approach to the problem while-
condition (12b) requires that the potentials dijjer '
enough so that the collision is adiabatic with re-
gard to the helicily cigenstates. Except in the
vicinity of a classical turning point, E, is of the
order of thermal energy and is much larger than
E, which is of the order of #’K/ur. Therefore,
throughout the classically accessible region, at
least one of the inequalities (12) is satisfied by
any potential difference, This guarantees the !
general validity of a semiclassical description of |
depolarizing collisions.
As an illustration, we consider a simple poten- .

- tial such that {V,(-) - vy, (r}] is a2 monotonic, de- -
creasing function of . Thus if », is a distance
such that E, << |1, (re) = Vi lro) |« E;, the coadi
tions (12a) and (12v) are fulfilled. respectively,
when 7> 75 and »<y,. This situation is rep:-
sented in Fig. 3 which exhibits the overlap o' the !
adiabatic and single-trajectory regions, In this
situation one may transform Eq, (11) in order i3
examina the classical motion character of the
problem, We define a set of classical trajecto~
ries using a time parameter . The radial co-
ordinate r,,{t) satisfies the equaiions

+

(V=i 4

>

W
odncbgticr
opprm&m ion

g

4
singls lrajectory
FIG. 3. The spatial domains for adiabatic and single-
trajectory approximations are represented In the ease
of continuously decreasing V(1) =V ()] At 7y both
approximations are valid.

.

dr, ., { = v, ryuth when (<0,

di Uplr () when >0, (13) (rp)
/
754(0) "‘"JJ)(TP 5
where the raldal speed v,,(r)Is | . v
Daylr)= { P}/ u when rer,, (14)

v, (r)= (2,0 (rDy/1 when »>9,,

and #{I7 is the coordinate of the classical turning
point in channel M, with angular momentum J,

Two different situations may be examined in the
limits that 0P is larger or smaller than »y,

I <y The incident particle first reaches the
radius »g at a time t; which is )/ independent as-
suming a2 common trajectory r,{t) for -w<t<t;
(since this interval corresponds to »>7,). In Eq.
(11) we replace bj,(r) by c.(1) defined by

cnl)=30r 0, t<g; s
and find that ¢,,(t) obeys the differential equation

Lenl)= 2 Bl e, t<t; (16)
N i |
where !

B‘,’,,,.(t)=g;[x}v(r,(l.)w,.,.‘+.\';,,(r,(!))6,,.,,,,] (17)

‘ .
xexp [ D =Vl en3ar t<t;.
(1

In arriving at Eqs. (16) and (17), we set (£, 2, )2
= (P, 4€,¢)/2=> v {r) and evaluate the phase dif-
ference (i/h')'f"o (9,4 =@,y Xir’ to first order in )
Vg - Vyre N * ‘
In the region r<»r,, the b},(r) are constant owing
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to the adiabatic nature of the collision for r <.
There is a classical trajectory »,, which may be
associated with each helicity state and a corre-
sponding classical turning point »1. The JWKB
connection formulas are used at the turning point

_to-relate bj,(r) and one finds

. L (TP) rp
b5y (TP et an ) = s (5P )p =100 gy b, (18a)

Since the l»},;(;-) are constant for r<r,, Eq. (18a)
may be written

ibjy(ro) = byy(rede~*'%y Eo 0, (18b)

Connection with the time-dependent ¢, (1) ampli-
tudes is achieved by associating

i

Bkrah, t<tigli (19a) ;

C;y(“= i
ingutran, o>l (wb)l

where t3, is the \-dependent time at which a clas-
sical particle moving along the r,y trajectory

would exit the »<r, region. Using Eqs, (19), (18),
and (6) we find .

. s e (. (-
calti) = cpultylexp (-,% [ _’"M-’—il—‘i-“—‘ﬁ). (20)
[F] *

Finally, for times { >#},. we are agin in the » >,
zone, Each r, trajectory created for » <r, now
continues into the y >, region without further !
splitting, Thus, each trajectory can be labeled by |
ils M value in the r<ry region, Yor t>13, (i.e., !
¥ >r,) there is again coupling of the b3,(r) along
each trajectory, Defining

D =ibslr ity >ty

where 1,,.(¢) is the extension of the trajectory
associated \\ith M=M" in the y <y, region, one
finds that ¢}y, ; obeys equations analogous to (16)
and (17). The final value for b,,(eo) is givenby a
sum over all trajectories, i.e., !

(21);’

Jv'/?./)(

FIG. 4. An atom In a superposition state enters the |
interaction region with an impact patameter ¢/ + })/K.
From time t7 to {7 or ¢, no transition occurs be-
tiwveen substates and their respective trajectories may
part from cach other. After ¢ or tj, a single tra-
jectory starts {rem the point reached at £, or £}y,

ibyy(=) =i ): Bl yorlo)) = 2 clel=). (22)
This equation can be put into a more transparent
form if time evolution operators are introduced
such that

c,,,(!)=§;U,’,«,,(l',l)c,,,..(l'), t<t; (23a)
v = N .
cault) ;U;'}f:,v(l',l)c,.,u(l'), t>8.  (23D)

One can combine Eqs, (22), (23), and (20) to ob-
tain

1b}v(°°) = .“"Z U'"!;l(l;y') w)exp (:g"

.

iy

{f . @5, (r,u:(r))dr)

X Uﬂnu (-, t;)b;y"("”) (24)

Equation (24) may be given a simple physical in-
terpretation (see Fig. 4). In order to calculate

RO £ WA

the contribution of the Jth partial wave to the scat-

tering amplilude, one starts a collision at {= =oo
with bjy«(~), For -=<t<t;, collisions mix all
states along an average comnion trajectory and
this mixing is represented by Ul y{==,{7). For
t;<t<t},, the adiabatic states are not mixed by
the collisions and one evaluates elastic scattering
phase shifts along each trajectory., Finally, the
states are again mixed along each of the fina}
trajectories as represented by UM, (t5y:. =) (recall
that the superscript M’ labels the trajectory In
the adiabatic region)., The time-evolution opera-
tors describe the mixing and shifting of atomic
substates as the atoms move along classical tra-
jectories, The spatial coordinates have been
changed from quantum-mechanical variables into

time-depender.t parameters. However, there sub~ °

sists in Eq. (24) an exponential phase factor which
attests to the quantum-mechanical character of the
transtational motion in the region where r<yp,.

To get expressions for the time-evolution opera-
tors, one may use Eqs, (23), (16), and (17) to ob-
tain

‘%U{N(l',th};B,’,,u(t)uf,.,,u(t',l), t<t;  (25)
”"(t,v.,t) ZB”’ OV ety 1), >y
(25b)

subject fo

leg(t ‘) bxxc ? Uy ull(l;”l'l;¥1)=6y'“” ! (25(:)

|
|
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where B}, is given by Eq. (17) and B%.U) is
also given by Eq. (17) with »,(1) replaced by r,.(t)
(recall that r,,. indicates the trajectory associated
with the M " helicity state in the adiabatic region),
An expression for S-matrix elements is obtained
v spbstituting Eq. {(24) inte Eq. (7) and mal».ing
a comparison with Eq. (3). One finds®*

STy (=1 27 Vel W iy 0)

b3 eM}(IA,.,, +2in,yu) ? (26)

—iﬂ%’:-'—)-dr'—Kﬁ(J-b%)E (21a)

o

agn=d f' [Vl oD = Vil W e (27) |
NN NJ, 7y NNy :

%
- —a—— -

"‘,l'-' f- [Vu"(rm«(.?)) - Vlr (e W ]ar .

J

O
r',’,',”wo. In this case the time interval (17, 85y]
during which the trajectories purt from one anothi .

hel 2 ———
f_yoy(G'W) K(Y:SU\O)‘R

99 \-%

X — X exp(—-—--z(,\r :u) "']av"o exp(~- M) Y ) (29)
93;),1.. (mw) ;

|\
.

where Jgu~ is the angular momentum giving rise
to scattering at £v for an atom following trajec-
tory )" in the adiabatic region, This result is
valid provided that V& « Vo and J,,6>> 1, The
former condition allows one to use a stationary-
phase method, and the latter condition implies
that validity of Eq. (29) breaks down in the small-
angle diffractive region.
As in elastic scattering, the major contribution ;
in the sum over J comes from specific values of
*J, linking these values and the scattering direc-
tion (6p). However, Eq. (24) differs from the
usual elastic scattering amplitude in the fact that
for a given deflection direction ¢v. a distinet im-
pact parameter (J,,» + $)/K is associated with
each intermediate internal substate \/”. For more
general forms of the interaction poteatial, a rain-
bow angle may be defined and when 6 is smaller
than it, several vialues of J are generally involved
in the scattering amplitude for given § and )M”.
Throughout this section mention his been made
of classical trajectories. However, this notion

i m »t-f-v;- 2
T 0 3

- 1) ” Y
( 1) Z(Jaw)ml]g:vv"("“ I (t3gms =lexplia 2

‘er, collapses, so that {; and t}, may be set 00

in Eq. (22) which reduces to
S{wy=(~ 3)’(1,’,:,(—”,”)0-‘(17(:'7]”' +inl.v) . (28)

where

Ud (-, )= ’E Uyl 0, 00U, (0, ).

This region corresponds to weak {large impact
parameter) collisions.

This is the farthest point which ¢an be reached
in the direction of a semiclassical picture under
the approximation A<« ».. As has already been
noted in Sec, II, the classical trajectories which

have been hitherto considered may not be regarded

as actual paths since deflection in direction gp,
which is described by the scattering amplitude
[Eq. (2)] involves contribution from all the impact
parameters (J +1)/R,

The final step of the semiclassical approxima-
tion is possible provided v «\o, It consists in
using the stationary-phase method to calculate
the seattering amplitude (Eq. (2)]. This calcula-
tion Is performed in Appendix ‘B, In the simplest
case, that of a purely repulsive interaction, one
obtains

o
+ 21'1)Jo o)

'is actually meaningful, oniy when collisional ef-
fecis on observables are considered. Then scat-
tering cross sections instead of scattering ampli-
tudes are involved. The aim of the next sectlon
Is to discuss the classical trajectory picture of
depolarizing collisions on the observables which
are accessible in laser spectroscopy.

1V. DEPOLARIZING COLLISIONS INLASER !
SPLCTROSCOPY ‘

In a gas cell, the quantum-mechanical state of
atoms within a small domain of position-velocity
space around (¥, V) is most conveniently described
by the density-matrix elements Paa-(F; V) where
a and o’ label internal states. We shall limit the
discussion to the case where ¢ and o’ belong to
the same j level since we are interested in study-
ing the effect of depolarizing collisions, The gen-
eral transport equation which determines the col~
lisional evolution of densily-matrix elements of
“aclive atoms” immersed in a perturber bath is
given by?
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Pk s Z IO (Vphge (B, 0,10+ D 2 f WP (¥, Tiplea (F.7, 1), (302)
i R . .
where
et @rey [y (228 : - ‘ o
3 POA (V)-,\ (PU,-V,(\ :) “T‘T[fua'(vnVr)5aa"‘faa'("n",)5ca'] (3 0) 4
;. . -
and -
3 W (v, ¥) =N f dv, f @, S =V = YN, (V=T +¥)8(0, - v o080, 0,0 £ 50V, V), (30¢)
S |
where T, is the relative velocity between active and provides some measure of the effects of de-
atom and perturber, W,(¥,) is the perturber equi- polarizing collisions in level j. Integrating Eq.
librium velocity distribution, ¥ =(u/m){¥:-¥,), (30a) over velocity we find

N is the perturber density, and [, (V/,¥,) is the ]
a', V= o,V inelastic scattering amplitude, In dy - _ f -

our éas‘e th'e internal state is labeled by the mag- dtp!“""(r") ol Z ¥y (")p,,. an (T W0,
netic number m and the relevant scattering amnli- ; (32a)
tudes are f,,.(V;,¥,,A) wherc m and m’ are taken ‘

along a fixed quantization axis 4. This scattering
amplitude may be expressed as a function of the
scattering amplitude in the helicity representa-

where

Mow e oy s e es i A v g e e

yar = @) - [ avwsia @), (32

5 i .
; tion by . . ; Equation (32a) does not decouple y and p; however,
! an approximation that is often made®® is to neglect

fum (%200, A) = z DY R)DL R0, 9,), the ¥ dependence of the y's. In effect, one re-

(31) places y7. " (V) by

where ¢ = ((pw, 6,,,0) and &’ =(p,;, 6,; ,0) and ¢p
§ and ¢ are polar angles with rcspect to A.

In traditional optical punping experiments in
which depolarizing collisions are studied,* neither
the vapor excitation nor the signal detection is
velocity selective, In these experiments, the
broadband excitation creates density-matrix
elements pi .(F,V,1) in a state of given j and the
intensity of radiation emitted (or absorbed) from

::7‘"’ f oW Ey " (v), (33) '

where I (¥) Is the active aiom velocity distribu-
tion. A zood approximation to Eq. (32a) is then

——

. crn—— -

d - Z w
E;p',m;(l‘,l)l - :,‘7' p. .‘m(l ‘) (34) ¢
colt mtg :

L™ . -
these ma’ substates in a given direction and with The y,,," describe lhtf (velocity -averaged)
a specific polarization is monitored. With broad- coupling between magnetic sublevels and, as such,
1 band excitation and detection, the signal is a func- reflect the n>wre of the collisional interaction,
: tion of velocity-averaged density -matrix elements Thus the structure of the y3,™"can provide some

insight into the collisional procecs. By combining
Eqs, (33), (32b), 30b), and (30c) and performing
some of the integrations, one may obtain®

——ra—reas o

phorEi)= [ @0 ptnds, 7,0

::,'n" Nfdsv W, (V )l (,» [fn"n(vr’ )bn fm* "/n m' (v',V )6,“ ] fdn;, fm"‘(v' v )f:. "..'(V,, ,) . (35,

. . i
This expression can be written in terms of S-matrix elements if Eqs. (31) and (2) are used for the scat-
tering amplitudes, The resulting equation can be simplified by using the relation L4,.(0,¢,0) . .
—Z,.:Du +(R)D%2,+(®') and other elementary properties of the D matrices. The integrals over 4, and
aQ, ; can be carried out and after some cancellation of terms, one is left with :

]
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7:3‘"-——Z(-1)~(2;+1)(?.J'+1)(2f+1)(' j J‘)(i j f)(j i f)(J J' f)
m"

m ~-m' q -m™ g/ \u ~M' g/ \M*" =-M" ¢q

J J f)
. X MM fdl'“"(! |3 (éy,’oby rym "SJnysyu”o), . . (36)

-where the sum is over all repeated indices (except i), Equation (36) contains the selection rule m -m"
=m' -m" which may also be obtained from symmetry considerations. One can verify that LY mm ""=0, re-
flecting the conservation of probability 3~ ,dp,..(F. l)/dq t,() . :
Using Eq. (26), one can write the dynamical factor appe'\rinn in Eq. (36) as

Byrey+Byny = Syt 1Sy = Bymmye yoy = Z; U.,,,m (=0, 15107 yug= 0y WA 00y )

XU (’;"0+°°)E\p[“(-5iy““v"‘ -':':"y)]e-\'P["Zi(m'n'"ﬂ;n)l- 37

In writing Eq. (37) we have implicitly used the selection ruie |J -J’| j which is imposed by the 3 ~ j sym-
bols appearing in Eq. (36). Since J»j, differences between J and J! can be neglected in all but phase fac-
tors. In the previous section it has been shown that the quantum-mechanical aspect of the translational
motion is concentrated in the factors exp[-2i(n,,» = n,,)]. The other factors describe the evolution of in.
ternal substates along classical paths »,,(). Let iiJ, be the angular momentum for which »7f' =y, In Eq,
(36), the sum over J may he regarded as a sum over the impact parameter (J+ $)/K. in zumlogy with the
classical mechanics calculation, In the region where J >J, [or 7°<;"""] a common motlon approximation

is valid. Since |J -J'|«J, the phase difference in Eq, (37) can be expanded under the form %T
. ss)
(38)

uh: » P Qo bt
vu-.--m.=n,..--—n,..+(d'-.r) , [ 2 mons oy el

where,(an sa0/0J can be identified us the classlcal deflection angle 5{, (see Appendl‘t B). Then, following Eq, .
(28) one reduces Eq. (37) to .

OurourByny = SY% oSGy = Byw g Bymy = Ulfuyi(= 0, + UL yo (=, +)

&,

xexph. j [\-,,m(r,(l)\ﬂ Lr, (00 =V _yulr, (1)) - V,,(r,(t))]dlexp[ ‘gz(J -J)g,)(39)

e e

where (n,, ~1,,.) have been expanded to lowest '«'—«r,. This condition is not sufficient to regard
order In the potentials. This expression describes the atoms as wave packets of dimension much

the substate mixing along a single trajectory r,(1). smaller than the interaction distance. Thus, in

When J<J, [or 1,>47P"], it may be verified that analogy with JWKB calculaticns of scattering am-

10,5 = 0ae |>> 1 and that the factor exp(- 2i(n,r,. . plitudes, the classical trajectories that we have
-1),,,)] averages to zero by summation over J and mentioned are not really followed by the atoms.

J' for |n]¢#|a’'|. A classical trajectory r,, may A specific evaluation of ¥2.""'will be given in a
still be assigned to elements of-the density matrix future work, 3
which are diagonal (in the helicity representation) . . .

on entering the region r<», but the classical pic- Velocity sclective laser spectroscopy

ture fails for nondiagonal elemenis. In other J In velocity selective laser spectroscopy, the
*words at r =r, the magnetic substate populations relevant quantity which describes collisional ef-
Psasa are scattered along separate trajectories fects is the collision kernel W2, ™" (¥/,¥). Calcula-
r,, but the coherence between substates is lost tion of this kernel from Eqs. (30c) and (31) re-
owing to trajectory separation. . ‘ter the depar- quires the knowledge of products of differential
ture {from the region r<r,, substz‘2 mixing starts -scattering amplitudes of the form i
again along each separate trajectory. In some a3, (91, )20 (71, 7 X
sense the images given in Figs. 2(a) and 2(b) are , au Ty ).

valid when the interatomuc distance r is. respec- The stringent condition VX <<JT-¢' is needed to ob-
tively, larger or smaller than ;. To work out tain a semiclassical approximation of this quan-
this semiclassical pictare, the only needed con- tity. We consider still the simple case of purely

dition on the de Broglie wavelength has heen . repulsive interaction for which a semiclassical

NN T it S A B+ e 7 e W e <o 5 8 e X s~ by o
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scattering amplitude has been calculated (Eq. 29).
Since Eq. (29) is valid only if J,,0>>1, a supple-
mentary assumption is needed to take into account
small-angle scattering. We suppose that the width
“of p..(T.V.t) in velocity space is much larger
than the velocity change which corresponds to the
deflection angle defined by-J,,6=1. Thus, the
“collisional transport equation may be written

‘—’"—“-I PR

-N"N

V) e g (Ty V ’ .
( )p.,, ne(E5 ¥, ) F1G, 5, The scattering of 2-substate atoms at angle

0 results from the contribution of two trajectories: the
one which enters the r < ry region in substate 1 at im- f
pact parameter (Jq, + 1R (1) and the one which enters the !
r< ¥y vegion in substate 2 at impact parameter (J,-., t
f . + 1/ @1). Along cach trajectory mixipg between sub-

R Tl o) o ) states occurs for r < r,. The trajectories of substate 2
¥ Zu“’ A0 WD Vpmen (Y,.V 1 in I and substate 1 in Ilo\\'ould lcad to scattering at an
) (40) angle other than 0 and ave, therefore, not continued in-
to the r < ry reglon,

+ 2 P (T3 ¥ t)fd L WRLT (W, ¥)

where Wn n" (%, ¥) describes collisions which are
such that J,,6>1 and Wn, " (¥, ¥) describes the !
remalining very small-angle collisions. The first
two terms may be calculated in the same way as As above, two collision regions may be distin-
Yo, . guished depending on whether J, is larger or

The semiclassical approximation of scattering smaller than J,. When Jyy >J,, a single trajectory
amplitudes Is needed to determine W2, %" (¥, V), is available and one obtains

J

da

s hel
T g i u0p) = m

xexp-- f. dt[V_ym(r ,o(t)\ Voyolrs i) + Vi vy i) = Vikr, ()]

ymuo("'w +”)‘U y"y(" o, +“)

X exp (' M =0+ - M')’!‘) “n

for use in Eqs. (30c) and (31). This result contains the product of a semiclassical elastic differential scat-
tering cross section by a factor which accounts for the M3’ transitions along this trajectory. :
When Jg, >J,, distinct trajectories corresponding to distinct substates may contribute tc scattering at

0p and
v S8 ) 0 00) = s,nOZ(JmJe.»"*u o=, P0G (= 2, (00515 rv"’*‘ (e )
x exp[-i(a Ty 0 = A7) lexp{~ i(M™ = A1 = A1 + M) %+i(.\l’ -Mp)

: o« (22 2o )" | ’
3 gn 0 gur

exp[zi(nJo. ol‘ - n,oull) + i(JOn -Joh.)ol M (42)
A} . .

The last factor in Ea, (42) represents interference
effects between diverging trajectories. Its angu-
lar dependence is given by 9

do[ (nle ' nl u) (Jen' 'Jou)‘ Ja-"'"on
(43)

- This angular dependence leads to oscillations of
WauS" (¥, ¥) as a function of ¥ and ¥, In fwaln”

RN R AR ik S5 S
o 3 oy 2, o gon,
e N R

[ g -
(¥, V)ppwmm (§/)d3’, the integral over y* averages

to zero for terms with |n ¢ |n’| provided (u/mu
Weon,=J o, | % is much smaller than the width of
Pmme (V) in velocity space, where y is the active-
atom mean speed,

The net effect.of scattering in direction ¢y for
a two-level system in this limit is shown in Fig.
5. The angular momenta .J,,(i = 1, 2) correspond
to scattering of an atom n state § through the
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angle 0p. For r>r, the substates are mixed by
the collisional interaction along each o. the two
trajectories I and II. For r<y, the two states in
each of trajectories I and I are split by the col-
lisional interaction, but only one trajectory in
each leads to scattering at (é0). Finally, the
states in a given trajectory ure again mixed for
r>ro. The internal final state is a combination
of internal states which have experienced the his-
tory shown in Fig. 5. When the above conditions
are not fulfilled, no simple picture can be given.
1t should be noticed that the phase factor in Eq.
(42) cannot be clearly separated into a “spatial
phase shift” which would represent interference
effects between diverging trajectories, and an
“internal phase shift” which results from internal
substate mixing and which is present along a com-
mon classical trajectory,

Thus, the methods used to calculate y7."* and
woo (¥, ¥) are perfectly consistent with the
JWKB and classical trajectory approximations,
respectively, that are used to calculate total and
differential scattering cross sections. Assuming
A7, the result for ym.»" can be interpreted in
terms of a large number of partial waves glving
rise to scattering at angle 6¢ with no classical
correspondence between impact parameter and
scattering angle; however, the relevant phase
shifts and substate coupling are calculated along

classical trajectories (just as the 5, are calculated

along'classical trajectories in the JWKB evalua-
tion of collision cross sections), Under the more
stringent condition VX « V7, the derived expres-
sion for the kernel W72 (¥, %) can be interpreted
as arising {from collisions having the appropriate
impact parameter to give rise to classical scat-
tering at 6. There may be a number of such im-
pact parameters reflecting the different inter-
action potentials for the various magnetic sub-
states, .

We have not attempted to give an interpretation
to W™ (¥, ¥) under the less restrictive semi-
classical condition A <<»,; in this limit the large

number of partial waves contributing to each scat- .

tering amplitude leads to a very complicated ex-
pression when bilinear products of the scattering
amplitudes are taken to form the collision kernel,
Only when (tofal cross sections, such as those
represented by y2. ", are evaluated does one re-

nm'

gain a result with a simple physical interpretation,

V. SUMMARY |

In view of understanding the signal formation in
laser spectroscopic experiments when depolariz-
ing collisions are present, we have developed a
semiclassical theory of these collisions. First

|
!
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we have shown that single-trajectory approxima-
tion and adiabatic approximation can be combined
to obtain a generally valid expression for the
semiclassical phase shifts (providedx«<r.). An
explicit calculation of this phase shift has been
outlined in the simple case of a continuously de~
creasing difference of the suhstate dependent in-
teratomic potentials, The conditions of validity
for using a semiclassical scattering amplitude
have been examined and the case of a purely re-
pulsive interaction has been treated in some de-
tail. Using semiclassical approximations to the
scattering amplitudes, we investigated the nature
of the depolarization collision kernels and rates

which enter into laser spectroscopic experiments.

For these two quantities a picture of the scatter-
ing, In terms of classical trajectories, has been
given. In a forthcoming paper, expressions that

we have obtained will be used in a numerical cal-

culation of the corresponding signal profiles which

could be observed In laser spectroscopic experi-
ments.
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APPENDIX A: DERIVATION OF THE RADIAL
EQUATIONY

A convenient set of commuting observables in
the center-of-mass frame consists of the Hamil-
tonian ¥, j*, and the total angular-momentum

operators J°,J,, where J, is taken along a labora-

tory fixed axis of quantization Oz, The corre-
sponding eigenfunctions are ¥//Y7(£.5) where M,
is an eigenvalue of J, and 5 denotes the ensemble
of electronic coordinates of the colliding atoms.
The total Hanilltonian ¥ is

H=8{) +§;1 SVE),

where Ho(3) is the internal Hamiltonian, V(#,p)
is the interatomic potential, and

Pty ML 2 g

The Hamiltonian, without internuclear motion, is

ilh-t
2urt

Ho=8o(0) 4 +V(F,5).

Its elgenfunctions are ol.(r,5) where Al is the
simulmpeous eigenvalue of J,. and j,. along the
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rotating axis of quantization T. The expansion of equation is determined by the asymptotic form of )

¢M¥(F,5) in terms of ¢ (r,p), and the wave func- a scattered plane wave which is
tion ¥ .(r) describing the scattering is'? .
z - K" e , - 4
1 : V! '\PL({))"’Z ";"yy'(aaﬂ'?w(”:l))’
w0 )= T e 0 D), o

where 24(p) is the electronic wave function as-

suming that the quantization axis is along K, and
fhd.(6,@) is the scattering amplitude in the helicity  ~
representation. The connection between d4(5)

and @l (»,p) is '

where ®& is the rotation which brings T along Oz,
We substitute this expression into the Schrédinger
equation

”’l\" J,y -y "y -)
"2"‘1-\} Jﬁ,p)"ll‘l’ "(F’p »

where K is the magnitude of the relative motion pLB)= ZDL‘;,.(G{)w&.(m.T))'.
wave vector, Projection on ¢4*(r, 5} leads to the v
radial equation Expansion of the plane -wave function in terms of

: 22 2702 spherical harmonics leads to
( KE d __E_ﬂ_‘_l._'i_,‘_.+<‘u'le))2-ivl(r)

.

T | |
A L 1 .

ML) S ; (21+1)(2J + 1)(e'" = (= 1) e™¥")

‘ »

X ' x(z; J)(lj J)
. O M =M \O A =M

B - M|Viarye
== 5 WV,

et}

where

3 od s ' - ;
i= f@‘(’}l‘("o P){;cﬁ_’v(r, B, - Lo x 9’ —!-M'(a)‘l’lv'(”o B . !
. . ! Summing over ! and using Eq. (2) one finally ob-
. -2\ .
Aol = (v,,(r)+‘"" +1) :u‘r’, Sk ”r.f)a,,,. ~ taing ) .
”‘ ( A ) ( ) ; ) IO; -{Kr iKr '
-W[A, Iy A (5, M)Byyeay . ‘P-'z-':k—;;(&]+l)[-(—l) Uoyrout +Shyee'*) -
. . , A . i
2 (j, M (J, Myyrate ! X (= 1)YY'DLE R)ph (=, B). ';
. i
Mld, M) =[JT+1) =2 (0 £ D] and Vy(r) I8 ' . !
the value of the interatomic potential in substate Since ¥ =¥, 4 /1" (F, ), we see that thez asymp- -
Mg o the diagonal term, the contributions which totic form of the radial wave functlon is '
Contain's and j(j +1) - 2)° may be neglected as 27+1 '
they are of the order of X/7.. lim Vi ()= - =5 (- et !
The boundary-value condition which is necessary T by
to select the appropriate solution of the radial ] X [B_yyre™t5" = (= 1"/ 5] e'* ] '|
. ) ! )
APPENDIX B: STATIONARY-PHASE !
CALCULATION i
The needed approximation for :D,,.(xt. 0,0) for large J values is given by Brussaard and Tolhoek®
RIS A . -1/ -
9%,.(0,6,0)= (5 sinek(e) Sin(zh\ﬁ-' + W{,,,.(B)) , (B1)
where .
§(0) =[J% - (AF + M'® = 2MM' cos 0)/sin’g]'P (B2)
and _ )
Wi+ (0) =J cos (s cos6 - MMWJ* - PP ? - M) ) . ;
- Afcos-*{(Mcosg - At')/sinolJ? - ARIE] - A1 cos (M’ cos - M)/sing(J? ~ AT LA (B3)
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This 1ppro'<xmahon is valid provided W {6} > 1.
This expression is substituted into Eq. (2). The
sum of the term involving 6y, vanishes'’ and one
is left with

(l)'

het

fyy'(o)(P)- Z(3J+1)SH.V':DM!'(‘P: 9,0),

(B4)

where SJ,. is to be given by Eq. (26). The quanti-
ties U (¢, 1') and exp(ia}¥y), appearing in Eq. .
(26) are slowly varying functions of J with respect :
to exp(2iy,,«). Thus, they can be taken out of '
the sum over J and evaluated at a point of maxi-
mum contribution to the sum. One may use the
stationary-phase method to calculate

f dJ expl2in,y» + 254 (6)]. (BS)

The stationary-phase condition is d/dJ[2n,y« | \

R R
R RN S S
.

———— - — .

A okt SRR,

£, (6)]=0 which leads to

N ,,( J?cosg ~ AN )
2 w Lces (JJ_"1.‘)1/1(.‘,&‘..‘1'.‘)llr1 (86) §"
or, when M<«J, ' _ T

dn e (ﬁ TRV 9_1_1)

2 d‘l S 0* O J& ) J.l * JZ . (87’ }ﬂ
The classical deflection angle 6 is defined by
. i
§
e=2far, (B8) ;

where dn,y«/d4J satisfies Eq. (B7) to first order
in M'/J, A set of angular momenta J gy~ may
satisfy Eq. (k8). We restrict now our calculation
to the single case of a purely repulsive potential,
Then 0=6 and the semiclassical scattering am-
plitude may be evaluated from Eqs. (B4), (22),
and (B1) using the method of stationary phase.
One obtains

* tion; J.-L. Le Gouct and R. Vetter, J, Phys. B 13,
L1117 (1950).

$The scattering can depend strongly on the internal
state, although the exchange of angular momentum be-
tween internal and external motion is very small with

P -l L]
j!j‘,.,(g@::m ,Z.(JW")'/: f(si%'_:) ;u”.'i(-eo l,)U"aunu (lu"'”)exp(iA;%"” +2i0, wyn) >
) x exp( s =i + M) -:Je,,.a)exp(- u\l«p) (B9)
This expression is bound to the validity of the U [Jyno 8in0|> 1 (B11)
stationary-phase approximation which requires The points of stationary phése for channels M
, that o and M’ are well separated provided that '
‘a*o (a o)'"*l «1. (B10) 5 [y =yl (B0/20)"2/2, (B12)
The fulfillment of this condition implies that the
This condmon generally reduces to VX« \5‘— One wave packets in channels M/ and M/’ do not over-
has to also take account of the condition of vaud- lap. When condition (B12) is not fulfilled the dis-
ity of the approximation used for D}, (0, 6, 0). To tinct wave packets coalesce into a single one, but
first order in M/J the approximation demands Eq. (B9) is still valid, since Eq. (B8) still has
that l a single solution for a given value of A",
$Laboratoire associé A I"Université Paris-Sud. regard to the translational angular momentum,
IPor a comprehensive bibliography see R. Vetter and "W, D. Held, J. Schottler, and J. P, Toennies, Chem,
P. R. Berman, Comments At. Mol. Phys. 10, 69 \ Phys, Lett, 6, 304 (1970); H. Udseth, C, . Glese, and
(1981). : W.R. G('ntr), J. Chem. Phys. 51, 3643 (1971),
3p, R, Berman, Phys. Rev, A 5, 927; 6, 2157 (1972). Ip, Secrest and B, P, Johnson, J. . Chem. Phys. 15, 4556
v, A, Alekseev, T. L %.rdree\a. apd T, I. Sobelman, (1966); B. R. Johnson, D, Secrest, W, A, Lester. and
2h. Eksp, Teor. Fiz. ((‘. pan (19\\)(Sov. Phys.~— i R. B, Bernstein, Chem. Phys. Lett, 1, 396 (1967).
JETP 35, 325 (1972). .o H. F. Helbig and E, Everhart, Phys. Rev. 140, 16
‘\\' llapper. Rev, Mod. Phys. 44, 169 (1972). i 1965); J. C. Houvier, P, Fayeton, and M. B: Barat,
$\. Gorlicki, A. Peuriot, and M. Dumont, J, Phys. ' J. Phys, B 7, 1353 (1974).
(Paris) Lett. 41, L275 (1950) and private communica- i 1y, H. .\liller, J. Chem. Phys. 53, 1949 (1970); 54, .

5386 (1971). i

MR, A. Marcus, J. Chem, Phys, 54, 3965 (1971); :
J. N. L. Connor and R. A. Marcus, ibid, 55, 5636
1971).
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52, 4832 (1970),
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don Ser. A 315, 465 (1970) and references therein,

143, B. Delos; W, R. Thorson, and S. K. Knudson, Phys.
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(1959).

®n the chss!cal plcture of the adiabatic 1{mit, the mo-

mentum § precesses rapidly around ¥ and this motion
is much faster than the rotation of the internuclear
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vector around the center of mass. The classical §-
matrix problem is then reduced to the solution of one
differentinl equation for cach value of Je /v,

e Insist upon the fact that in S{y, M’ is taken along
K while M is measured along ¥. Thus, in the absence
of any collisional interaction, looking in the forward
direction one observes a final momentum M along ¥,
which is_equal to the initial momentum M’ along di~

srection K. This implies that S%,, is diagonal in M,
Op the other hand, in the adiabatic approximation, as
the internal momentum is linked to the internuclear
axis, a final momentum M corresponds to the same
momentum along the {nitial internucle'tr axis, 1. e.. to
the opposite value — M along direction K. Thus S{
is proportional to 6. yyr .

25, Omont, J. Phys. Radlum 26, 26 (1965), P, R. Ber-
wman and W, E. Lamb, Ph)s. Rev. 187, 221 (1969).

3p, J. Brussard and H, A. Tolhock, Physica (Utrecht)
23, 955 (1957).
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T'hI4. Pressure Dependence of Gratings Produced by DFIWM
in Na. L. M. HUMPHREY, P. P LIAO, AND . R BERMAN,® Bell Tele-
phone Laboratories, Crawfords Ce rner Road, Halmdel, New Jersey
07733.—Degenerate four-wave mixing may be viewed us the simul-
tancous production and reading of two real-time holographic gratings.
If the oppasitely propagating pun:p beams have orthogonal polar-
izations, it is possible to control waich grating is produced and read
by changing the polarization of the probe.  We have investigated the
foreign gas pressure dependence of the two possible gratings far off
resonance and have found striking differences.  Our experiments were
performed in Na vapor using a single-mode ew dve laser, at ~389 nin,
vhose output was passed through an E.Q modulator set up to give
25-ns pulses. With an angle between probe and pump of 0,014 rad,

) the probe beam polatization was set to produce o grating with a 9.9
10~ e spacing. Hdliva gas was introduced into the Na eell. The
conjugate wave intensity decreased by a factor of 10 by 10 Torr heli-
um,  With the probe heam palarizition set to produce a grating with
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4 2 X 1078 em spiicing, the conjugate wave inh-nsit,\_' ‘incn‘n\\"ed with
increasing gas pressure betore leveling of U near IE)() | orr, @ factor of
o larger than with no s These results are explained in terms ol the
adiahatic folowing model. (13 miny)
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Coherence effects in radiatively assisted inelastic collisions: General theory

Paul R. Berman
Laboratoire Aimé Cotton, Centre National de la Recherche Scientifigue I1, Bétiment 505, 91405 Orsay-Cedex, France
and Physics Department, New York University, 4 Washington Place, New York, New York 10003*
(Received 21 March 1980)

A radiatively assisted inelastic collision (RAIC) is one in which two atoms collide in the presence of a radiation
ficld to produce a reaction of the form A* 4 B + #f2—A + B*. In this paper, a general theory of RAIC is
developed with special attention given to the final-state coherences produced by RAIC. These final-state coherences
can be monitored by standard experimental techniques (polarization of fluorescence, quantum beats), enabling one
to use sich studies to gain information on the interatomic potentials that are relevant to the RAIC under

consideration.

1. INTRODUCTION

There has been considerable recent interest in
reactions of the form

A +AL +HQ—-A,+ AL )

in which two atoms (A and A’) undergo a collision
while simultaneously absorbing a photon of energy
2 G from an external radiation field to take the
atoms from some initial state 4, A} to a final state
AjAj, In many cases, the direct transition 4,
+A} —~4,+A} is energetically forbidden; conse-
quently, the transition can take place only in the
presence of the radiation field, with the photon
providing the energy mismatch (E, + E,.) - (E,
+E;).! Such processes have been reterred to as
radiative collisions® (RC), laser-induced colli-
sional energy transfer’ (LICET), or radiatively
assisted inelastic collisions' (RAIC) and have beun
the subject of a large number of theoretical® and a
lesser number of experimental™® investigations,
By studying the RAIC cross section as a function
of frequency §, one can gain important informa-
tion about the infiial- and final-state 44’ inter-
atomic potentials,

Typically, the RAIC cross section can be mea-
sured by monitoring the fluorescence from one of
the final states (A}, for example) since the total
RAIC cross section can be simply related to the
total fluorescence rate, It is apparent, however,
that additional information is contained in the
polarization of the fluorescence, i,e., in the co-
herence properties of the final states, It is the
purpose of this paper to present a general theory
of RAIC which allows one to calculate the final-
state coherence properties 2s well as the total
RAIC cross section, Experimentally, the final-
state coherence can be probed by standard methods
(absorption, emissgion, or quantum beats origi-
nating from one of the final states).

A few calculations™® have already appeared

Supported by the U.S. Office of Haval Research
under Contract No. NO0D14-77-C-0553.

which include magnetic degeneracy eftects in RAIC
and in the related problem of collisionally agsisted
radiative excitation (CARE)., However, these cal-
culations were restricted to specific J values for
the various levels and to specific forms for the
interatomic potentials; moreover, only total cross
sections were obtained,

A more global picture of the collisional process
is achieved if levels of arbitrary J and interatomic
potentials of a quite general nature are considered.
The calculations, including an averaging over dif-
ferent collision orientations, are conveniently
carried out using techniques involving irreducible
tensor operators, The final-state coherence re-
sulting from RAIC can then be interpreted in terms
of the symmetry properties of the interatomice po-
tential and the characteristic properties (polariza-
tion, frequency, intensity) of the external light
field participating in the RAIC reaction,

A general formalism for RAIC is given in this
paper. The physical system is described ir Sec.
11, the equations of motion are given in Sec, Il
(and derived in Appendix A), and a formal solution
is obtained in Sec, IV, A discussion of the results
is given in Sec, V. In Appendix B, I present a
diagrammatic interpretation of the operators that
appear in the equations of motion,

Solutions of the RAIC equations in the limit
where the external field is weak and the collision-
induced level shifts of the atomic energy levels
can be neglected will be presented in a following
paper, In future work, solutions of the RAIC equa-
tions will be sought that are valid for arbitrary
field streugths and include level-shifting effects,

IL. PHYSICAL SYSTEM

The physical system consists of a low density
(<several hundred Torr) atcmic vapor conta.ning
two types of atoms, 4 and A’, to which a light
pulse is applied, The atomic energy levels {or

1838 © 1980 The American Physical Society
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atoms A and A’ are shown in Fig, 1, Levels of
atom A are designated by unprimed variables and
those of atom A’ by primed ones, It is assumed
that the levels of each atvm can be separated into
subgroups of levels (see Fig, 1), with the energy
separation between sublevels in a given group
having some upper bound fiw, (to be established
below). Specifically, the sublevels within a group
are generally different fine structure, hyperfine
structure, or Zeeman sublevels of a given elec-
tronic state, The atoms are prepared in a liaear
superposition of states lii’), where i and i’ repre-
sent any of the sublevels in the ¢ and ¢’ groups, re-
spectively.

The light pulse is taken to be of the form

E®,0)=43®, e + 3R, ty*e'], @)

where the envelope function |&(R, #)| is character-
ized by a duration 7 and a maximum amplitude

|8,] (Fig. 2). It is assumed that the pulse envelope
vdries very slowly in an optical period (7> 1)
and that the frequency @ is very far detuned from
any transition frequency in atom A or in atom A’,
On the other hand, the field is assumed to be in
near resonance with the transition in the composite
AA’ system from some initial state |ii') to & final
state |ff). In other words

where E, is the energy of a given level a,

Thus, the field can induce {ransitions only in
the composite system AA’, implying that excita-
tion can occur only if there is an A~ A’ collision
during the on-time of the light pulse, Let us sup-
pose that such a collision occurs, centered at time
t=1,, position R= R,, and is characterized by &
collision duration 7,=b/v, where b is the impact

@)

B4 -~ - ======}f

o

l{-_

4

==}L'
A A

FIG. 1. Energy levels for the atoms 4 and A" under
consideration, The groups of levels represented by a
single letter are degenerate or near degenerate, with a
maximum frequency separation wg such that wgT, <1
(T,=duration of a collision). The field frequency @ is
such that AQ=E; + Eje - (B¢ + E0),
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FIG. 2, Field-pulse envelope as a function of time. A

collision occurs, centered in time at t=¢,, with a dura-
don 1, <T,

parameter and v, the relative atomic speed as-
sociated with the collision, Collision durations
are on the order of 1012 gec 80 that it is rea-
sonable to assume that

T,<T,

@

since pulse durations 72 1,0 nsec are typical,
Thus, excitation occurs on the time scale 7,; on
this time scale, the field amplitude 8(R, t) ip es-
sentially constant and may be evaluated as &(R,, ?,)
(Fig, 2). In calculating excitation probabilities,

it is generally necessary to average over all pos-
sible ¢, and R during the light pulse and to aver-
age over all collislon impact parameters, orienta-
tions, and relative apeeds, The average over R,
is equivalent {o an average over the spatial pro-
file of the ligl: pulse,

The following assumptions are adopted: (1)
Collisional excitation exchange between atoms A
and A’ does not occur in the absence of the light
field (i.e., all such exchange processes are as-
sumed to be nonresonant), (2) The trequency wy
is chosen such that

("K!.«lo

(5)

ensuring that all sublevels in a given group are,

in eftect, degenerate during a collision, (3) There
is no population decay or buildup of Doppler phase
during a collision; that is,

yTe<1, kur,«<1, (6)

where yis a decay rate associated with the initial
or {inal states, K ia a wave vector associated with
the field, and » is an atomic speed. (4) Each atom
undergoes, at most, one collision, on average,
during the pulse time 7, enabling one to ignore
multiple-collision effects [ valid for densities
«10!? atoms/cm® T (nsec)]. (5) The collision
trajectory is treated classically, which implies
that the change in kinetic energy resulting from
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RAIC is small, i.e., that

|wpg +wpep - 27, 51, "
where

Wop =Wy = Ws,

If condition (7) were not satisfied, one could not
assign a unique classical trajectory to the colli-
sion,

To summarize, Iam considering the radiatively
assisted collisional reaction

A+ ALHEQ —~ A + Ak

from initial states |ii’) to final states |ff"), in
which the photon is provided by an electromag-
netic pulse, Several assumptions relating to the
time scales in the problem have been made which
are valid for many systems of practical interest,
All information on final-staie coherence is con-
tained in the density matriz fn)lowing the RAIC,
The final-state density matrix for one of the atoms
can be obtained by taking the trace of the final-state
density matrix for the composite system over the
final-state variables of the other atom, Experi-
mentally, it is generally such a single-particle
density matrix that is monitored (e.g., by fluo-
rescence {from the final state of one of the atoms),

1. EQUATIONS OF MOTION

By assumption, the collision trajectory is treated
clagsically, That is, relative to a fixed laboratory

i”&“' =
1

(| 8t;1,0,v,,0, R, t) 418,y

wo=E/f . (12)

frame, a collision is characterized by an impact
parameter b, relative speed v,=|v~v’| ¥ and v/
being, respectively, the velocities of atoms A and
A’), and orientation © relative to the fixed frame.
The Hamiltonian for the RAIC can be written

H(t;b,0,,0,R,, t,) = H)F) + H)F')
- i+ [ER,, t)e 0 +c.c.)
+a(r, v, Re), ®)

where H, and Hj are the free-atom Hamiltonians
for atoms A and A’, respectively, i and u are
the dipole-moment operators for atoms A and A’,
respectively (the atom-field interaction is treated
in the dipole approximation), and U is the A-A’
interaction Hamiltonian, The collision is centered
in time at =7, and R, is the position of the center
of mass of the atoms when ¢=¢,, All effects of
atomic motion are contained implicitly in the inter-
atomic separation R(t), calculated for a classical
trajectory. In writing the approximate Hamiltonian
(8), conditions (4), (8), and (7) were used,

According to the assumptions of Sec, II, states
|4y can be coupled only to states |i,]) (i, is
another state in the £ group) or to states |ff), The
corresponding equations of motion for the probabil-
ity amplitudes a,. (f), @, (f) (in the interaction
representation), as derived in Appendix A starting
trom the Schrodinger equation with the Hamiltonian
(8), are given by

+ ;; @i | Fup, it';t,b,4,0, R,, ) |70 ettta,,. (9a)

M&H' =§1 (f I §(ff’; t,b,v,,0, ﬁ., '.) lflfl')af‘]i

+;; | Pai, £ 0,0, 0,,0, R, 8,) |ii0) ety (ob)

where the detuning A is defined by
A=0- (W +wpy),
and the operators $and 7 are defined below,

(10)

The operator §(aa’; ,b,v,,0,R,,1,) is an operator that acts only in the aa’ subspace (xa’=ii’ or ff');
it shifts and couples levels within that subspace, Explicitly (see Appendix A),

S(aa’;t, b,v,,e,ﬁ,,l) §,+8,

-t (B

1)

hpe 8, 1) JﬂB')(ﬂB'IA, R, t)  Jipe SR, 0 88088 i, BB, 1) o

w‘I+w" =8 w‘¢+w‘0 +Q )’ ( )

§=-11 3 u(R(t»IBB'l(gi lucen )

T T sl

: :::sm'}r:*r e @
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‘Where

He=R+p, (12)
The operator § may appear to be complicated, but it has a well-known physical interpretation, The term
S, involvés only field variables and gives risé to the shifting (light shifts) and coupling of aa’ levels pro-
duced by an off-resonant external electromagnetic field, The summation over intermediate states 88’
represents the virtual excitation of these levels by the field, The term S, [Eq. (11b)] involvee only colli-
sion variables and gives rise to collisionally induced shifting and coupling of levels in the aa’ group, The
shift of the levels is the origin of the pressure broadening and shifting of spectral 1ines, while the coupling
within the aa’ group leads to collisionally induced relaxation of any alignment, orientation, ete,, that may
be present in that group of levels, Again one finds a summation over an infinite number of virtual excita-

tions |BBY.

The transition operator 7' that couples groups of states |i#") to |ff") is given by (see Appendix A)

P - R t e . v ' B - -
ey A e L) 15, o

and represents the combined effect of the (field + collision) in producing the transition from initial to final
states, The correaponding transition operator which conples states |ff* to |ii") is given by’

B, i834,,0,, 0, Ry, )= §(“’| EB(BR" [WEREN , wR(EN| BN(EE | "r). Rt (14)

w” + w‘l"

Note that the matrix elements of T appearing in
Eq, (9) are related by

@ ltur ol = | Tae s n iy,
(15)

A diagrammatic interpretation of § and T is given
in Appendix B,

To obtain the RAIC excitation probability, one
must solve Eqs, (9) for a,,. (#,) subject to the ini-
tial conditions

a0 (67)#0, a0 (¢3)=0, (t6)

where #;(,) are times before (after) the collision,
Since 7, < T [Eq, (4) or Fig. 2], the times ¢! can
be set equal to 1+ when integrating Eqs. (9) with-
out introducing significant error,

The validity conditions for Eqs, (9) are discussed
in detail in Appendix A, If

wr,>»1, (1 §))

where « is any of the frequency denominators ap-
pearing in the operators 7 and S, and if Eqs, (3)-
(7) are satisfied, then Eqs, (9) are valid over a
wide range of field strengths,!® Condition (17)
ensures that the intermediate states act only as
virtual levels in the RAIC problem, The virtual
excitations are represented by the summations
over Band 8’ in the $ and T operators, and the
problem is reduced to an effective two groups of
levels problem for the states |ii*) and |ff’). It
should be noted that Egs. (9) reduce to the corre-
sponding equations derived by other authors in
various limiting cases,’

w“ + Warye

1V. FORMAL SOLUTION

It is useful to make use of By, (15) and to re-
write Eqs. (9) in matrix form as

iN&,=S(, &, + [ TUF, 1) %3, (18a)
iH8, = S(F, Oia, + TUF, e~ 18, , (18b)
&)+ 0, &,(17)=0, (18c)

where &, (2,) is a vector containing all possible
states |ii') (|f7’)) in the initial (tinal) group of
levels and S{/,¢), S(F,t), and T{F,¢) are matrix
representations of the corresponding operators ap-
pearing in Eqs, (9). A solution of the form

() =Gyt t)ALt), K=I,F (19)

is sought, where the matrix G,(¢,#') is chosen to
satisty the equations

in a—‘-’l(—;;—'ﬁ = S(K, 0G4, ), (20a)
Gelt,Y=1, K=IF (20b)

and the symbols I and F represent the entire i’
and ff’ subspaces, respectively. Substituting Egs,
(£9) and (20) into Egqs. (18) and making use of the
relations

(Ge(t, ¥'N=Ge (¥, 1),
Gr(t, 8)Glt,, 1) =Gty ty)

which follow directly from Egs. (19) and (20), one
obtains

i A,=G,(t;, 0(TUF, )G, (t,t)et® R, , (22a)

(1)

T A 5 : o
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il Ap=Gplt 7, t)TUF, 0G,(t,t7)e"**A,,  (22b)
A0 =3,¢7), Aq¢0)=0. (22¢)
In this form, all effects of shifting and coupling
within the i’ and ff’ subspaces are contained in
the matrices G,(¢, #') and G.(t, #'), respectively,
Once a solution to Eqs, (22) is found, final-state
density matrix elements of the form
5”'3117'!“;; b,v,,@, ﬁqy t,)
=dgy (1) 9y 4, E)]*
o CT R LS ) P2 (PR Y PTC)
(23)
N

I, (0, 8) =T, 00, fo 21b db f (81r‘)"’def dR,

where 9, is the a-atom density (assumed to be
independent of position) and the shorthand notation

1=, F=ff', L=igy, F=ff{, (25)
etc., has been adopted, The integral over R, in
Eq, (24) is limited to the interaction region of the
atoms and light field; it is essentially an integra-
tion over the spatial profile of the light beam,

Thus, during the light pulse, the density matrix
evolves as

Prns(§, V1) . e
= o, =; I‘f}‘(v,, 'JP,,,(V, v, i)

+ [)E(tc)!;(v’ v, to)]rp“ ’ (26)

where ;,=; -V'. The assumption that an atom
undergoes at most one collision during the light
pulse is contained implicitly in Eq, (26), other-
wise, terms such as

r :’F’,a p’a',
would be present. The term with X(¢,) represents
changes produced by processes other than RAIC
(i.e., level decay, other external tields, etc.),!
It is an equation of the form (26) plus a corre-
sponding equation for times when the light pulse is
off which must be solved in order to make connec-
tion with a given experimental situation (of course,
there are no RAIC terms in the equations with the
field off), For example, if the pulse time T is
ghort enough so tHat the bracketed term in Eq,
(26) may be neglected, then the final-state density
matrix following the light pulse is simply

- - - . r
bor 7, T0=F ([ wiytontaar,)
1

X0, @,V T7), 27)

d[prey(t);0,v,,0,R,, 8]

may be constructed (the tilde is a reminder that
results are expressed in the interaction representa-
tion), The (complex) rate at which RAIC create
density matrix elements Py, 41 (£ 55y, £,) at time

¢, during the light pulse for atoms A and A’ having
relative speed v, starting from an initial density
matrix element p;,, 1y (£2) is given by

-

A By ¢ )] ' (@4

|

where T (T} indicates a time just before (after)
the pulse, One can then monitor the final-state
density matrix via absorption or emission expert-
ments to obtain values for the various rates I‘,, '
For longer pulse times T, it may be necessary to
integrate Eq, (26) to obtain the net effect of the
light pulse,

To be consistent with other authors, I define a
RAIC transfer rate per pulse from some initial
state deacribed by p,, to a final state described

by pFﬂ as
T ()= e f Ti ot  (28)

and a RAIC transfer cross section per pulse by

orlrl: V)= P;ﬁ,(vr)/(mAmA‘vrdeo)' (29)

where the R, integration is over the interaction
volume,!? The rate and cross section for transfer
of population from some initial state |I) to a final
state | F) is obtained by setting I, =J, F,=Fin
Eqs. (28) and (29), Finally, one can define an
average RAIC rate and cross section by

-f(vr) =):,—’ ; P{’IF(UV) ’ (30a)

3, =;,‘; 3 oHewn), (30)

where N, is the number of initial states, Equation
(30b) defines a quantity that has been typically
referred to as the RAIC cross section.’

V. DISCUSSION

In general, it is difficult to obtain soluiions to
Eqgs. (22) and perform the necesgary averaging
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over collision orientations, However, certain gen-
eral features of the solutions may be understood by
exzirining some of the limiting forms of these
equations,

A. Nondegenerate levels

In this limit, the matrices Sand 7 in Eqs, (18)
become scalars, Equation (20) is easily integrated
and one finds that Eqs. (22) take the form

iA,= T(IF, t)* explil af- ¢,(O)]}Ar (31a)
A, =T(F, ) exp{-i[at- ¢, (B)]}4,, (31b)
where

¢
@,(t)= f; _[S(F,¢)- su, en)ar (32)
L4

and 7 and F are nondegenerate states, The phase
@,(t) contains the effects of the level shifts pro-
duced by the off-resonant light field and the colli-
sional interaction, Equations (31) have been
studied by many authors using a variety of ana-
lytical and numerical techniques,™!* The resulting
RAIC profile exhibits a marked asymmetry for
large |A|, resulting from the action of the level-
shifting term, For one sign of 4, the /- F transi-
tion can be brought into instantaneous resonance
with the field during a collision, leading to en-
hanced excitation; for the other gign of 4, no such
instantaneous resonance is possible, Equations
(31) also contains saturation effects which can ap-
pear for large field strengths or small impact pa-
rameters,

B. Perturbation-theory limit

By neglecting the level-shifting terms in Eqs,
(22) and taking A =0, one can estimate that a
perturbation solution is valid provided

M’—%—_.‘.l)-llﬂ-x «1, (33)
where U(f=1,)) is the interatomic potential at the
time of closest approach, 7,=b/v, is the collision
time, x is a Rabi frequency (e.g., x={8'|n’'|f"|8|/
2K}, and @ is some characteristic frequency de-
nominator appearing in the transition operator T
[Eq. (13)]. For nonzero &, Eq, (33) is replaced
by a less severe condition, Since |u(t=t,)|7,/fi
~1 in the range of impact parameters that con-
tributes to excitation,!® the perturbation theory
fails for field str'engths xy = @. Regardless of field
strength, inequality (33) always fails to hold for
sufficiently small impact parameters [u(t=1))
varies typically as 5™"]; this domain can be
treated by using a cutoff procedure,’

In the perturbation-theory limit, Eq. (22b) can

be integrated directly after getting K,(t):a’.,(t;).
Using Eqgs, (22), (19), and (21), one may obtain

- + 2gey - ‘; .
ap(t;) = (in)! ]; _ Gplt,, VTUF,¥)
¢
X Gy, t7)e~ 4 a ()t

34)

To be consistent with the perturbation-theory
limit, the contributions to G, and G, arising from
the light-shift operator should be neglected, Equa-
tion (34) may be given a simple interpretation,
Starting in the state represented by 5,(t;), one has
a mixing and shifting of the initial levels from time
t=t; totime t=1' [represented by G,(',t)], a
transition from initial to final state at time t=¢'

[ represented by T(IF, #)] and & mixing and shifting
of final-state levels from time ¢=1# to time t=¢,
[represented by G,(t;,¢)]; an integration over all
possible ¢ is included, Thus, it appears that re-
orientation effects in the initial and final states
are correlated with both the shifting of these

le. '8 and the changes that occur in the /- F tran-
sition, In particular, if there are times at which
instantaneous resonances occur for a given de-
tuning |a|7,21, the T matrix can be evaluated at
such times and the integral (34) evaluated by a
stationary-phage method, This condition can help
to simplify the calculations, although the average
over collision orientations can still pose con-
siderable problems, Experimentally, one should
expect to find a variation-of final-state coherence
as a function of detuning.

C. Perturbation theory neglecting level shifts

Additional simplifications of Eq. (34) are pos-
sible for a range of impact parameters if one
limits the detuning to the impact core of the RAIC
profile (|a|7,«1), If |a[7,«1, the effects of
instantaneous resonances are not important, since
the phase factor exp(iat) is slowly varying; all
times ¥ in the range (¢, ;) contribute to the in-
tegral in Eq. (34). Since the matrix S is quadratic
in the collision interaction potential while the T
matrix is linear in it, there exists a range of
impact parameters where one can neglect the
collisional contributions to S, Contributions to S
from the light field have already been neglected
owing to the perturbation-theory limit, Thus, in
this limit where all level shifting and mixing in
the initial and final states are ignored, S(,?)
=S8(F,t)=0and, G,(t,')=Gp(t,#')=1, Equation
(34) reduces to

- " -
2= [ ar rur,meeei o). o9)
G
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This expression is evaluated explicitly in the
following paper, where the appropriate averaging
over collision orientations and impact parameters
is carried out, Since the interatomic potential
appears linearly in Eq. (35) and, consequently,
bilinearly in Eqs, (23) and (24), the averaging over
collision orientations is easily performed using
techniques involving irreducible tensor operators,
One can show that the collsion produces the same
type of final-state coherence properties that would
be produced by replacing the collision by an un-
polarized tield having the same multipolar proper-
ties as the collision operator (e,g., a dipole colli-
sion operator is replaced by an unpolarized elec-
tric field)., This result is not difticult to under-
stand, Excitation is produced in a single collision;
when averaged over all collision orientations, the
net effect is similar to that produced by an un-
polarized field of the corresponding multipolarity.

It is relatively easy in this case to predict the
final-state coherence properties for various polar-
izations of the external field, The final-state co-
herence may be observed by monitoring the po-
larization of fluorescence or the quantum beats
originating from one of the final states,

D. General case

If perturbation theory fails (power densities
210" W/em?), the solutions of Eqs, (22) exhibit
saturation effects, Unless a way can be found to
perform the averaging over collision orjentations
and beam intensity profiles, one is faced with the
costly task of integrating Eqs. (22) numerically as
a function of collision orientation © and field am-
plitude 8(R,,?,). There has been limited work in
this area, although a few related calculations have
appeared,’

A general formalism for calculating the final-
state coherences produced by radiatively-assisted
inelastic collisions has been given, In the following
paper, the RAIC transfer crogs gection is cal-
culated in the perturbation-theory limit, neglecting
level-shifting effects. In future work, it is hoped
that the more general problem will be addressed,

]
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APPENDIX A

In this appendix, starting from the Hamiltonian
(8) and using the assumptions of Sec. 11, I derive
Eqs, (9), The wave vector is written as

|\P(t))=¥ a, (et | M), (A1)
where

[ M) = |mm’y = |m) |y,

Wy=Wy t Wy,
and (w, and w,.) and (|m) and |m")’) are eigen-
frequencies and eigenkets of free atoms A and A’,
respectively [i.e., eigegtrequencies and eigenkets
of the Hamiltonians Hy(r) and Hy(r'), respectively,
appearing in Eq, {8)]. Iadopt the notation that a
captial Roman letter represents a composite state
of the AA’ system [e.g., [I)=[ii"), wp, =wy, +uy,
etc.]. Using Schrédinger’s equation with the
Hamiltonian (8), one can derive the following equa-

tion for the probability amplitude (in the interac-
tion representation) a,(¢):

iy ={~ KM|Ig|B)+ (B0t + 80 et0t]
+(M|u(t)|B)}etunsta, (A2)

where fly=Ji + ', W p=W, - Wy, and the summa-
tion convention is used,

According to the agsumptions of Sec, II, the
only states that are significnatly coupled are
|7y and | F), However, this coupling does not yet
appear directly in Eq, (A2) since the I- F coupling
is via virtual intermediate states, To see the
coupling directly, one writes Eq, (A2) for a,, re-
placing the ag which appears on the right-hand side
of this equation by the value obtained by formally
integrating Eq. (A2) for @5, In this way, one finds

iy =e'orst [~ }(F|[i,|B)+ (Fe~10t + 8* i) +(Flu(t)| B)]

x(a,,(l;‘)+(ih‘)“ j: _' dt' etvent' [~ X(B|Lg|a) (Ee-mt' + &%) (B I‘u(t')IM)]a,(!’)). (A3)

The term proportional to a4(¢;) can be neglected
using the assumption that the field and collision
must act simultaneously to produce a transition,
The validity conditions for the neglect of this term

-
are
W TI>»1, ®T,»1, (A4)

where w, and w, are some appropriate frequency
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mismatches for the atom-tield and atora-atom in-
teractions, respectively,!®

The integral term in Eq. (A3) is treated as fol-
lows: (1) The only terms a,(#') of importance are
assumed to be ar,(t") and a,(t'), where |F,) is in
the final-state group of levels, This assumption is
equivalent to asserting that there is negligible
population in all states outside the 7 and F groups
(i.e,, that there are only virfual excitations of the
intermediate states), For this approximation to
be valid one must again require conditions (A4) to
hold. In addition, one must require that the cross
section for transfer within a given atom from
either its initial or final state to some intermedi-
ate state be negligible, This cross section is .ve-
cisely that associated with collisionally-aidea
radiative excitation (CARE),* For &,7,>1 and
X «<@,, CARE is unimportant, However, CARE
may become significant in the strong-tield regime
X »@,; in that case, one would have to expand the

J

w4

w."' ﬂ

+%(uﬁdw QMML&L)) Ge""a,,

w.’-A

where there is no sum on F and 4 is defined by
Eq. (10), The quantity A& appearing in the fre-
quency denominator can be neglected in compari-
son With w,, and it should be dropped for con-
sistency (see below), Equation (A8) is then identi-
cal to Eqas, (8b), (11), and (13), using the notation
I=ii', F=ff', B=fg’, and Fy=f,f{. Similarly,
Eq. (9a) can be verified,

Finally, one can check to see if a,(t) is slowly
varying compared with exp(lwt) as has been as-
sumed (@ =W, or @) By examining Eqs, (9), one
can deduce that |4,/8,|uu i8 given by the largest
of either |a], w,=1/7,, or Au(t=1,)y/®, where
x is a Rabi frequency in the problem, Thus, in
order to neglect all but the groups 7 and F, one
must have

o/ |al»>1, Gr,»1,

[l‘\l(l:fnzl‘rR (x)]_é% «1,

x @

(a7

Note that one may retain a consistent solution even
in the strong-field limit, Ftjult=t)|Tx/G =1,
provided that @7, is large enough to assure the
validity of the last inequality in conditions (A7).
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basis to include those states coupled to either
II Yor IF) by CARE. (2) Antiresonance terms in
Eq. (A8) varying as exp[zi(ws, + Q)] or

(£2i04) are neglected, (3) The functions
(Blu(t")| M) and a,(t') are assumed to be slowly
varying with respect to the exponential factors and
are evaluated ut time # =£, For this assumption
to be valid, one must have

(A5)

There is a supplementary condition which must
also be satisfied related to the time variation of
a,(t') (see below), (4) Frequency differences
Wep,» Wy, are neglected with respect to o, or W,
and factors such as exp(iw,,¢) or exp(iw,,‘t) are
set equal to unity, These approximations are
valid owing to Eqs. (5) and (AS5),

With these assumptions, one can easily carry
out the integration in Eq, (A3) and obtain

W, T, >»>1, w7 >1,

lBl SsBlEtIF,z 6') ISFl‘NSQIBﬁBI‘HMIFﬁ]
ap
Wy 1

w"+ﬂ

(A8)

APPENDIX B

A simple diagrammatic interpretation of the
operators 7 and § appearing in Egqs. (9) can be
given, The interaction between the field and the
atoms is represented by

(B1)

L
The field takes the atom from the composite state
A=aa’ to B= " Actually this diagram may be
thought of as the sum of two diagrams,

RN

(] aa’ of’ aa' Bo°

in which the field acts on each atom separately,
The collisional interaction is represented by

(B2)
A B
taking the atoms from states A to B,

With these definitions, it is relatively easy to
draw the diagrams corresponding to the operators
§., S, and T(IF) appearing in Eqs. (11) and (13),
and these are shown in Fig, 3, Figure 3(a) corre-
sponds to the light-ghift operator S, (F) which acts

e
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o 1|

Fy B F
(b) T T
£ B F
(c) I i ! T
I B F + I8  F

FIG, 3, Disgrammatic interpretation of the operators
@ 8.(M, b) 8,(F), and (c) TUF). In each diagram a
wavy-line vertex refers to an atom-field interaction and
a straight-line vertex to a collisional tnteraction,

in the tinal-state subspace [a similar diagram can
be drawn for $z(D]. The tield excites either of the
atoms to some intermediate virtual state and then
de-excites the atom back to the final-state mani-
fold, Figure 3(b) corresponds to the collisional
operator $,(F); the collision excites the atoms to
some intermediate state B =88’ and then de-ex-
cites them to the final-state manifold. Finally,
Fig. 3(c) corresponds to the operator F(/F), The
field and collision combine to excite the atoms from
initial state 7 to final state F via the virtual inter-
mediate state B, These diagrams immediately il-
lustrate the nature of the operators appearing in
the RAIC equations (i.e,, S, varies as |8]?, §,

as ¥?, and Pasus),

1t is also possible to directly construct the
operators from the diagrams, More precisely, the
following rules enable one to calculate the matrix
representation of the operators in the interaction
representation,

(1) Assign a factor (- 1)*=! (N=number of ver-
tices) and a factor ef“cat (G ={inal state, H= initial
state) to each diagram,

(2) Each vertex of the form (Bl) is assigned the
value - (B g, E(t)|A). ~siere E(t) is given by
Eq, (2). Each vertex of the form (B2) is assigned
the value (B [u(t)| A).

(3) In the resulting expression, reject all rapidly
varying terms (e.g., terms varying as exp(x 2iQ?)
or exp[ (B +wgt]).

(4) For a vertex of the form (Bl) assign an energy
denominator ¥ (wp, £ ), with the (+) sign used if

appears in the B-A matrix element and the (-)
sign if &* appears in the B-A matrix element, For
a vertex of the form (B2) assign an energy de-
nominator Kw,,. Energy denominators are as-
signed for all but the last vertex in any diagram.

(5) Sum over all intermediate states,

As an example, I calculate Fig, 3(a) and the
second diagram in Fig, 3(c), Following rules (1)
and (2) for Fig, 3(a) gives

~3erri(B | i, (Bemtot + gtecm) |Fy)
X (F|fip+ (Ee=19t + §*etoty|B) ,
Keeping only the slowly varying terms [ rule (3)]
yields
4P [(F| i, 8 |BYB| o §|Fy)
+(F|iTy- 8(BXB iy 8 F))].
(B3)

An energy denominator is assigned only to the

first vertex and is #(w,, - ) for the tirst term

in (B3) (since & appears in the B- Fy matrix ele-
ment) and i8 #(wpy + Q) for the second term in

(B3) (since &* appears in the B- F| matrix element),
Therefore,

a 1
(FI& | Ry =~ grerri

x(wlﬁ,'é‘ |B)XB| iy §|Fy)

w’p‘ -
JAFliy- 81B)B i, 8° lm)
Wy, 0

in agreement with the first two terms of Eq, (A6)
[recall that I set exp(iwpp t)=1and wpp™ wgy, in
that equation],

Similarly, applying rules (1) and (2) to the second
diagram of Fig, 3(c) yields

1e!r1' (Bl Ge19t +E*e|1)(Flu|B),
Keeping the slowly varying term which varies as

8 expli(w,, - Q)] =&8e~13¢ and applying rules (3)-
(5) gives

1 i FlulBYBliI,-8]D)
& war -8

which agrees with the last term of Eq. (A8) since
War = B=wgp - 4,
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Theory of coherences produced by radiatively assisted inelastic collisions:
Weak-field impact-core limit

Paul R. Berman
Laboratoire Aimé Cotton, Centre National de la Recherche Scientifique II, B8timent 505, 91405 Orsay-Cedex, France
and Physics Department, New York University, 4 Washington Place, New York, New York 10003*
(Received 21 March 1980)

A theoretical calculation of the final-state coherences produced by a radiatively assisted inelastic collision (RAIC)
is presented. Two atoms, 4 and A’, collide in the presence of an external radiation field to produce the RAIC
reaction 4, +A,+A2—A,+ A4, where |ii"> is the initial state, | "> is the final state, and £2 is the frequency of
the external ficld. It is assumed that the final states consist of a number of nearly degenerate levels and the
coherences produced in these levels by the RAIC reaction is calculated. These final-state coherences can be
monitored by standard techniques (polarization of fluorescence, quantum beats) enabling one to use the final-state
coherences as a probe of the RAIC reaction. The calculation is limited to the weak-field (perturbation-theory) limit

and is valid only in the impact core of the RAIC profile.

1. INTRODUCTION

In a previous paper® (to be referred to as RAIC
1), a general theory or radiatively assisted inelas-
tic collistons (RAIC) was developed. These colli-
sions represent processes of the form

A‘ +A‘+”“"A,+A;l

in which two atoms (A and A’) are excited from
initial states i’ to final states ff' by the com-
bined action of the collision and the absorption of a
photon from an external pulsed radiation field.
Whereas most previous theories of RAIC consid-
ered only one possible excitation channel (from
non degenerate state i’ to nondegenerate state
ff"), the theory presented in RAIC I allowed for
the more general RAIC excitation from a group of
initial levels characterized by some appropriate
density matrix to a group of final levels. An ex-
pression was obtained for the final-state density
matrix which completely described both the popu-
lation and coherence properties of the excitation
process, The final-state coherences can be mon-
itored by standard experimental techniques (e.g.,
measurement of the polarization of fluorescence
or quantum beats originating from the final states
of one of the atoms); alternatively, one can moni-
tor the final-state populations (e.g., by measuring
the total fluorescence rate from one of the final
states), It turns out, however, that measurements
of final-state coherences provide a more sensi-
tive probe of the RAIC interatomic potentials than
do measurements of final-state populations. Thus,
it appears useful to develop a theory of RAIC
which permits one to calculate the induced-final-
state coherences.

In this paper, a perturbative solution of the
RAIC equations is obtained which is valid provided
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(1) the external field is sufficiently weak and (2)
the detunings are restricted to the impact core

of the RAIC profile, Starting with some arbitrary
initial density matrix and assuming interatomic
potentials and external -field polarizations of a
quite arbitrary nature, the final-state density
matrix for the system is calculated, The most
general case leads to rather lengthy expresasions
which are presented in the Appendices. Specific
results are given in the body of the paper for the
reduced density matrix of atom A’ in the limits
of (1) dipole-dipole interatomic potential, (2)
straight-line collisional trajectory, (3) linearly
polarized external field, (4) central tuning, (5)
unpolarized initial state, (6) final states of a given
atom characterized by the same J quantum num-
ber, and (7) a summation over intermediate vir-
tual states that reduces to one term, owing to a
nearly satisfied resonance condition. It is shown
that the fluorescence emitted from the final states
of one of the atoms directly reflects the nature of
the interatomic potential, Thus, in contrast with
normal RAIC experiments where one must record
an entire RAIC profile as a function of detuning to
test interatomic potentialmodels, a polarization
measurement at central tuning (where the signal
is largest) serves to probe the interatomic poten-
tial,

It may seem strange that collisions induce co-
herence, since it is generally thought that colli-
sions destroy coherence. In fact, it will be seen
that the collisional interaction may be viewed as
two unpolarized (but possibly correlated) “fields”
incident on the atoms from all directions. The
fields are chosen to have the same multipolar
properties as the collisional interactions they
represent (e.g., a dipole operator is replaced by
a dipole field), In this way the final-state coher-

1848 © 1980 The Amenican Physical Society
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ence can be understood as the combined action of
three fields; two unpolarized fields plus the ex-
ternal field. It is the external field which may be
polarized and possesses a well-defined direction-
ality in any case, that is the origin of the final-
state coherence. The collisional interaction re-
sponsible for the RAIC reaction will, in general,
modify the final-state coherence,

In Sec, U, the physical system is deacribed and
an expression for the final-state amplitude given,
An outline of the calculation is presented in Sec.
Ill, with the detalls given in the Appendices, The
final -state density matrix is given in Sec, IV
for the case outlined above, In Sec. V the RAIC
excitation cross sections and the polarization of
the fluoresence emitted from the final state of
atom A’ are calculated using a cutoff procedure
to treat collisions with small impact parameters.
A discussion and physical interpretation of the
results are given in Sec. VI,

It should be noted that this paper is easentially
self-contained, However, the reader is referred
to RAIC I for a general overview of the problem,
for a detailed derivation of the RAIC equations in-
cluding validity conditions, and for references to
previous work,

IL PHYSICAL SYSTEM AND TRANSITION
AMPUITUDE

The physical system consists of two atoms,
A and A, undergoing a collision in the presence
of a pulsed radiation field. The time of closest
approach during the collision is t=¢, and the
center-of~-mass position of the atoms at this time
s R=R,. The amplitude of the pulsed tield is as-

sumed to vary slowly during the collision and is
evaluated at (R,,¢,); the field is taken to be of
the form

EtsR,oto) 243 e7t00 pet®], ()

where |3, | is the tield amplitude at (R, ,?, ).

The energy levels of atoms A and A’ are shown
in Fig. 1. Each label in the figure represents a
group of levels having a maximum {requency sep-
aration w, <<77!, where 7. is the durationof a
collision, Since

W T K1, (2

levels within a given group may be considered as
degenerate during the RAIC, The levels associated
with atom A are represented by lower-case un-
primed variables and those associated with atom
A’ by primed ones. A capital letter refersto a
state of the composite system (I =i ¢, E=ee’,
Fy=ff{, etc.) and the convention

w,=w‘+w‘:, w'.'—'w,'{'w,l , (3)

ete., is adopted, where w,=E,/f and E is the
energy associated with state a,

Before the collision, the atoms are in an ar-
bitrary linear superposition of the states | /)
={#’)={i){#’), where { and {’ represent any of
the levels in the § and ¢’ groups, respectively.
The field is assumed to be nearly resonant with
the I - F transition in the composite system,
i.e., 8=w, -w;. Mors precisely, the detuning o

defined by
A ‘-'»ﬁ - w” ’ (4)
Wpp =Wy =Wy (4a)

is limited, in this work, to the impact core of the
RAIC profile

a1, <1, (5

All other atom-atom or atom-field interactions
are assumed to be nonresonant; in other words,
all levels outside the I and F groups enter the
problem only as virtual levels, The contribution
of these virtual levels can be included in effective
operators that act in the /F subspace only. The
problem is to determine the final-state density
matrix following the collision since it provides a
complete description of the final -state coherences
and populations produced by RAIC,

The RAIC can be characterized by three opera- .
tors which have been discussed in RAIC L. First,
there is the “light-shift” operator S, which cou-
ples and shifts the levels within both the initial
and final groups of levels, This light-shift opera-
tor represents the virtual excitation and de-ex-
citation of either of the atoms by the external field,
The effects produced by S;, which are second or-
der in the field, are neglected in this work, since
the field is treated in a perturbation-theory limit.

o - — - -z } §'

o

smswem—s }Q'

L{ o _ . _|_ _

eme——— }L’
A A

FIG. 1. Energy-level dlagram of atoms A and A’,
Each group of levels labeled by 2 single letter is nearly
degenerate with a maximum frequency spacing between
‘avels within a group less than an inverse collision time,
The external-field frequency @ is such that ¥Q=~ (&,
+Ef)— (E“" E(a).
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Second, there is the collisional operator S,
which also couples and shifts the levels within the
initial and final groups of levels, This operator
is second order in the collisional interaction,
representing the collision-induced virtual excita-
tion and de-excitation of the composite AA’ sys-
tem in either its initial or final state. The opera-
tor S, is the origin of the pressure broadening
and shifting of spectral profiles. The relative im-
portance of S, is dependent on (i) the detuning A
and (it) the impact parameter associated with a
given collision, Owing to condition (§), the colli-
sion possesses sufficient frequency components
to effectively compensate for the detuning A.
Thus, in contrast to the case | A| 7,>1, where
collisional shifts can significantly enhance excita-
tion cross sections by bringing the atomic transi-
tion frequency into instantaneous resonance with
the field, all effects produced by the operator S,
related to the detuning may be neglected. The
dependence of S, on the impact parameter is dis-
cussed following the description of the transition
operator.

The transition cperator T(/F) represents the
combined action of the (field + collision) in coupling
the initial state |/) to final state | F') via a virtual
excitation of intermediate states, This operator
can be represented diagrammatically by the four
terms shown in either Fig, 2 or Fig. 3. In Figs.
2(a) and 3(a), the collision (represented by non-
wavy lines) acts to virtually excite the atoms from
state |$4’) to state |ef’) and the field (represented

w_1 |

Ld ef f¢

ot ]

L ie #

FIG. 2. Diagrams representing matrix elements of the
transition operation from initial state |¢i’) to final state
Lff"). A straight-line vertex corresponds to a collision
interaction and wavy-line vertex to an atom-field inter-
action. The states ¢ and ¢’ represent some arbitrary
intermediate (virtual) states in atoms A and A’, respec-
tively.
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by wavy lines) then acts on atom A to complete
the excitation to the final state | /'), In Figs.
2(b) and 3(b) the collision excites the virtual state
| fe') and the field acts on atom A’ to complete
the excitation. In Figs. 2(c) and 3(c) the field acts
on atom A to excite the virtual state [ei’) and the
collision completes the excitation to the final
state | ff’). Finally, in Figs. 2(d) and 3(d), the
field acts on atom A’ to excite the virtual state
| ie’) and the collision completes the excitation.
It may be seen from Fig, 2 that the transition
operator is linear in both the field and collisional
interaction, Explicitly,! one finds matrix ele-
ments of T(IF) to be

(F|T(F;t,b,v,,0,R,, ¢\ 1)
1 ((Fl i EYCE[W(R()) 1)
n

Wy

+<F|u('ﬁ(e))w><ElﬁA'>)-s', , (8)

Wep
where ¢ is the time during the collision; b, v,,
¢
i

0] ¢ o

ny

— I
L G

{c

(d)

FIG. 3. A schematic representation of the contribu-
tions to the final-state RAIC amplitude complementary
to that shown in Fig. 2. Each diagram corresponds to
the similarly labeled diagram in Fig, 2. Solid lines with
arrows represent the collisional interaction and wavy
lines represent the atom-field interaction. States e¢ and
e’ are virtual states excited in the RAIC reaction. Each
level actually corresponds to a group of nearly degen-
erate levels.
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and © are the impact parameter, relative speed,
and collision orientation, respectively, associated
with the collision

Re=he+l )
where H and E ‘ are the electric~dipole opg_rators
for atoms A and A’, respectively; and U{ R(¢)) is
the collision interaction Hamiltonian calculated
assuming a classical interatomic collision tra-
jectory R(t). In writing Eq. (6), I have used the
fact that w, <wyg, wy (recall that w, is the
maximum frequency separation within a group of
levels) and have adopted a summation convention
in which any repeated state label (no¢ including
its appearance in a phase factor or frequency de-
nominator) is summed over (e.g., in Eq. (6),
there is a sum over E but not over I or F),?
Since 7 is the sum of two terms, one can readily
identify Eq. (6) with the four figures of Fig, 2,
An analogous calculation for the operator T(FI)
yields

(L\T(FI;8)| F)y=(F| TUF; ) 1)* . (8)

Since T(I F) varies linearly in and S, varies
as (4)? and since W varies typically as b=*
{n>0), one can conclude that, for collisions with
“large” impact parameters, the effects produced
by Sc may be neglected in comparison with those
produced by T'(IF), For* 'smaller” impact parame-
ters, the contributionof S, cannolonger beignored.
Forthepresent, I1consider only those collisions with
b>b,, where b, is the minimum impact parameter
for which the contribution from S, can be neglect-

ed, In Sec, V a simple model is developed for
treating collisions with #< b, v

Thus, during collisions with >b,, the proba-
bility amplitudes (in the interaction representa-
tion) for the initial and final states obey the
equations of motion

ifid,=(F|TUF,t)I)e~**a, (92)

ifa,=(F|T(IF,t)|1)*e*®a, (9b)

where it has been agsumed that changes in a; or
a, resulting from level decay and atomic motion
(Doppler effect) are negligible on the time scale
of a collision, Furthermore, it is now agsumed
that the field strength is weak enough so that Eqs.
(9) can be solved by perturbation theory with init-
ial conditions a; (¢7)#0, a,(t;)=0, where t; is a
time just before the collision, Integrating Eqs.
(9) in the perturbation-theory limit, one finds a
final-state amplitude at time ¢! just following the
collision given by

' .
a,(l;):(m)"(j“_ (FITUF, D e“‘“dt)a, (ts) .

(10)

Perturbation theory is valid provided that |a,(t)i?
«1 for all ¢ during a collision having b=b6, Un-
der typical experimental conditions, perturbation
theory is valid for power densities < 10'°W/cm?,

It remains to carry out the integration in Eq,
(10), to form final-state density-matrix elements,
and to average over all appropriate collision
parameters.

11l, OUTLINE OF CALCULATION

Forming final -state density-matrix elements from the amplitude (10) and carrying out the average over

collision orientations ©, one obtains®

Pn,(': ;b’vnﬁco‘c):R;‘,‘l (b'vv ’.ﬁc’tc)plll(t; )’

where

(11a)

- ‘: ': ~ Iy '
Rg"; (b,v,,l{.,t.):)i”(anz)“f(b‘/:; (FTUF,t)|1)e 2 at j:: (FITUF,t')| 1)*e** at', (11b)

The dependence of T on (b,v,,6,R,, ¢.) has been
suppressed in Eqs. (10) and (11), In this section,
a method for evaluating Egs. (11) is outlined; de-
tails of the calculation are given in the Appendices,
The averaging over b and R, is deferred to Sec.
\'A

The matrix elements of T needed in Eq. (11b)
may be calculated using Eq. (6) once the inter-
atomic potential U and the field &'c are specified.
An arbitrary potential can be written in the form

|}
B -tg, b,v,,0) =AM (t-t.b,v,,6)) T,

'0

(12)

where 7% and T!% are components of irreducible
tensor operators of rank k and k' (assumeq :nte-
gral), respectively, which act on states of aloms
A and A’, respectively. In the form (12), the po-
tential can be viewed as the sum of correlated

multipolar fields acting on each of the atoms, the
correlation provided by the coupling constants
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A::f .. The average over all collision orientations
needed in Eq. (11b) is equivalent to including all
possible directions of incidence and polarizations
for these multipolar fields. In some sense,
therefore, the collisions can be viewed as produc-
ing the same effect as a sum of unpolarized, but
correlated, multipolar fields acting on atoms A
and A’. This picture of the collisional process
can be useful in understanding the coherences
produced by RAIC and is used in Sec. VI to help
explain the results obtained for the various RAIC
cross sections,

In oxder to carry out the average over O, it is
convenient to rewrite Eq. (12) in the form

u(t=t,;b,0,,0)=" A5t ~4,30,0,, 0 VE ,

(13)
where
[k w K] '
My - ¢ ¢ ¢ ry, (142)
- -
U hEE AN (14p)
““le ¢ @7

and the quantity in brackets is a Clebsch-Gordon
coefficient, Since the V§ transform as the com-
ponents of an irreducible tensor operator under
rotation, the expansion coefficients A% transform
as

M AK(t-ty;0,0,,0)
=QE) @) Akt =t,;0,v,,0), (15)

where the &%), are matrix elements of the irre-
ducible representation of order (K) of the rotation
group and © =0 is some arbitrary collision geo-
metry. The © dependence is now contained totally
in the &Y., enabling one to easily perform the
© integration required in Eq. (11b) (see below).
In anticipation of the time integrals also required
in Eq. (11b), I define the quantlties

A (b,0,,0;4)= (v,/b)f ° AM!(1,b,0,,6)

Xe"A(‘l’olc)dT (16&)
and
) 8wt an’
» a5(0,0,,038)=0,/0) [ ° ° M 4K(5,0,0,,0)
¢ "t
Xe-m(ntc)d.r , (16b)

which are also related via Eq. (14b), Equation (15)
remains valid for *' 4%(6,v,,0;4),

v ta e et e v e Bam b e s meas v © e mes ey

It remains to specify the atom-field interaction
[ 6° . The field amplitude may be written

¥.=¢6,, lel=1 1)

where € is a complex polarization vector. One
then finds

B8, = (-1 (kp)Pe 8. , (18)

where

€= —(e,+i€,)/V2Z,
€., =(e, ~%,)/V2, (19)
€0=€1 ’

and

(“2‘){u= -[(ur), +‘(“ r),]/ﬁ_,
(20)
(n 1')91) =[(u gl =il t)v] NZ, (s f)éu = (gl »

The quantities (11 4)%’ are the components of an
irreducible tensor operator of rank 1.

Since all the operators appearing in Eq. (6) have
now been expressed in terms of the components of
irreducible tensor operators, the matrix elements
appearing in Eq. (6) are easily calculated using the
Wigner-Eckart theorem® (see Appendix A). The
resulting expressions for ( F| 1(F,¢)|I) and
(F| TUF,t)11,)* ave then inserted into Eq. (11b)
and the integration over © is performed using the
fact that®

@9 [ do @l (@) BEz(ON*
= (2K +1)7 8,50050q:5¢ (21)

to arrive at a value for Rjz: (b,v, JR.,t.) [Eq.
(11b)] and p gy, (20, u,,m t.) [Eq. (lla)] The
final expressioms are rather lengthy and are given
in Appendix A along with the details of the calcu-
lation,

Experimentally, one often observes the final-
state properties of only one of the atoms. Imag-
ine, for example, that one monitors the final-
state coherence of atom A’, Mathematically, this
coherence is described by the reduced density
matrix obtained by tracing p,, over the final-
state variables of atom A, Expiicitly, these re-
duced density-matrix elements p ,.,: are given by
setting F=ff', F,=ff{ and summing over f, l.e,,

pf'!i(‘c5b’vr’ﬂv’tc)=pll' =Ili(‘c;b’v”Rc"c) .
(22)
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A calculation of these reduced matrix elements,
those of atom A, and the connection between the
two is also given in Appendix A,

The coherence properties of a system are con-
veniently expressed in terms of the irreducible
tensor components of the density matrix. The
transformation between matrix elements is given
by

Iy dps K
I"iptE = (= 1)1}
My -m,i Q

x(f'J,,m,olp'If'J,Im,i), (23a)

along with the inverse transform

(fldpmpuip’ |f’J1im;i)

S 1)Y= my
(=1)7""s} My =y

K

ol "fie'§ . (23)
where it has been assumed that a state |a) may
be labeled by |aJ ,m,) and that states within a
given group of levels differ only in their J and
m, quantum numbers.’ The p§ are matrix ele-
ments of the density matrix expandedinanirreduc-
ible tensor basis, When expressed in this fashion,
one can see directly if there is any final-state
coherence. The quantity pJ is given by

3013 = @1y + 173 S I mye |0 f 1 0 mp )y, »
1

(24)

and is proportional to the total final-state popula-
tion. Any nonzero value of p {¥ for K>0 indicates
that final-state coherence exists, since a totally
unpolarized final state leads to p 'y =0 for K#0,

In Appendix A, general expressions for p;:,i
and ¢¥ ave obtained, assuming an arbitrary in-
itial state. These expressions are evaluated in
detail in Appendix B for the case of an unpolarized
initial state. In the following section, certain
limiting cases of these cilculations are discussed.

IV. RESULTS FOR A SPECIFIC MODEL

In order to illustrate the physical principles in-
volved in the RAIC process, I consider a limiting
case of the general resuits presented in Append-
ices A and B, The following model is adopted: (1)
Each group of levels a can be represented by a
single angular momentum quantum number J ,
(valid for fine-structure splittings >7;'), (2) The
initial state is unpolarized. (3) Owing to a nearly
satisfied resonance condition, only one group of

levels enters in the sun'mation over intermediate

virtual states. In this limit, the reduced'dehbity

matrix for atom A’ is calculated. Since the final

state of atom A’ is characterized by a single J

value J,» =J,, the calculation of /'/'p{f is es- .
sentially one in which the Zeeman coherences of

level f' are determined.

In order for condition (3) to be satistiad one of
the virtual levels shown in Fig, 3 must be nearly
coincident with a real atomic level, This condi-
tion can be achieved with any of the level schemes
shown in Fig. 4. For example, if the level
scheme is as shown in Fig. 4(a), then the domi-
nant contribution to the final-state amplitude
comes from the diagram of Fig. 2() with the sum
over intermediate states e restricted to the single
group of states e=7; contributions from states
e#7 as well as from the other diagrams of Figs.
2(b)-2(d) are relatively unimportant in this case
in comparison with this nearly resonant contri-
bution, Similarly, if the level scheme is as
shown in Figs, 4(b)-4(d), the dominant contribu-
tion comes from the diagrams of Figs. 2(b)-2(d)
with the summation over intermediate states re-
stricted toe=ror ',

¢
i

o ¢ i
Nt

B+
L

(c)

LT

A A

FIG. 4. Four different cases of energy-level schemes
that lead to a single term dominating the sum over inter-
mediate virtual states, Each level corresponds to a
group of nearly degenerate levels.
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The frequency mismatches associated with Figs. respectively. Although these frequencies are
4(a)-4(d) are small in comparison with those associated with
other virtual states, they still are assumed to
By =W, +Wpr =y (25a) satisfy | Al 7, >1 (a =a -d) to ensure that states
. 7 or 7’ still act as virtual states in the RAIC pro-
cess. Experimentally, one often seeks level

. By =0+ 0y =y (25b) schemes similar to those shown in Fig. 4 in order
to enhance excitation probabilities.
Ao =Wy + Wyt =Wy (25¢) For the level scheme of Fig. 4(a), the final-state
reduced density matrix for atom A’ is obtained
A =W+ W =Wy , (25d) from Eqgs, (B3), (B4), and (25a) as
J

'’ P'o‘ (‘: 30,0, ﬁc 1l )o@ (bse /"”r PNT? " 'Ag: ®,v,, 035)[ "'AS: (®,v,, O;A)] *

XPrqagh (= 1) =i =3y =dy 2K 0T (£llu Dl e | T 4)

11K
XA TP SFUT ORI TN,
r¥e Yy
kp K)Y(N p K)Y(K p K
X §§ } , o
Jy 4, N v & k'\3p 3y 3
’ (
where N; is the number of initial states, process is represented by the product of the
MAKI[#AK', |+ factor and the reduced matrix
0 1 1 K elements of the collision operators T, T, TV,
Py =(=1)"*¢¥, ’ (27a) T'", The field then acts on atom 1 to excite the
;) -Q @ system from state v/’ to state ff'; this
process is represented by the factor
(ll**+lI} is a reduced matrix element, {***} is Pyol (flln' 713, with Pyq containing the polari-
a 6~J symbol, and zation properties of the field, The 6-J and
_ _ _ Clebsch-Gordon coefficients which appear are
@=1,Q=-1, Q=0 (27h) geometrical factors which arise when the various
as defined in Eq. (A17). J levels are coupled by either the collisional in-
Equation (26) has a simple interpretation in teraction or the field,
terms of Fig. 4(a). The collision excites the For the level scheme shown in Fig. 4(b), the
atoms from state i i/ to virtual state rf'; this result is given by Eqs, (B3), (B6), and (25b) as

T LR
ih

11 (et b, v, B, 1), =@k, kY, 1, 0, K, K, Q5 A)AF (=1)FIr( (24, +1)(2k + 1)(2k" +1))8,,8,.p:

.

o

L
ra

X O Uy PRANT® NS 2] o N2 iy (2

xy! 1 K , (28)
Jp Iy J,
where

Gk, k', b, p' K, K, Q; A) = (b8c/ﬁv,)3N;“"A‘51 ®,v,,0; 8)[*A & (b,v,,0; 3)]* Py (29)
This result is interpreted in terms of Fig. 4(b) as a collisional excitation from i’ to fr’ followed by a field

exciation of atom A’ to the final state ff’.
For the level scheme of Fig. 4(c), one obtains from Egs. (B3), (B11), and (25¢),

P e x VLD s e eemran s o e e e s i oo PRI T — N
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re D'S (t:'; b, vr’§c1 t).=ak, k" p,p' K,K', Q; A)A‘;z(-l)-" ST T g RN apap’ 22Ty T peK!

X Jer N PN TP Y ANT® Uy oI T ¥ iy

X (f: " Tr(") ”z'l)tg

1 1 K
Jo Jp Iy

oy K(Ye p K|k p K| (30)
i, J, I |0 & KAV, O, 9,

In terms of Fig. 4(c), one interprets this result asafield excitation from #i’ to ri’ followed by a collisional

excitation to ff'.

Finally, for the level scheme of Fig. 4(d), one finds from Eqs. (B3), (B13), and (25d)

1 08 (10 by 0y By 1= @k, R, 9, 57, K, K1, Q5 A)AH=1)700 39w o0 M (2 4 1) 2R? 4 )]

X By Byepe [r' Nt D Uy PIANTRUEY PJ N T Ny 2

U P

In terms of Fig, 4(d), this result corresponds to
& field excitation from i#’ to ir’ followed by a col-
lisional excitation to state 77’.

Equations (26)-(31) characterize the final-state
coherence of atom A’ for the level schemes of
Fig. 4. This coherence can be monitored by mea-
suring the polarization of the fluorescence emitted
by atom A’ from state * (see Sec. V).

A. Dipole-dipole interaction

As a somewhat more specific example, I now
consider the case where the collisional inter-
action is of a dipole-dipole nature. For such an
interaction, bkx=k'=p=p'=]l, T=p, and T'= u’,
The corresponding *A§(b, v,,0; &) are calculated
in Appendix C, assuming straight-line collision
trajectories,

The results for the dipole-dipole limit are con-
veniently expressed in terms of the Rabi fre-

J

1 1 K
J" J'l J‘O

(s1)
I
quencies
Xop=d(all u U8, /x, (32a)
X g = (e Il w1188 /R, (32b)

and a characteristic length b3,*" defined by
b3 = |2 ll w N1BY ar ll w18 Y /M, |3,

(33)

The quantity b3,* is a radius that typically appears
in theories of resonance broadening (“Weisskopt
radius” for resonant broadening) and usually has

a value in the 10 to 40 A range. Moreover, it is
useful to define the dimensionless quantity

D,(ab/v,)=b® ); |HA% (b, v,,0; 8)|2. (34)

For the level scheme of Fig. 4(a), the dipole-
dipole limit of Eq. (26) is

1 oot by v,y R,y 1), =N (=1)% | X5, /4, 200 /6D, (ab/v,)

e p, LK
Jr Jr JI

where
@o=dy=dp =d=d .

tkljt kl§r 1 k| (353)
AP AR AL R dY A A .

(35b)

For the level scheme of Fig. 4(b), the dipole-dipole limit of Eq. (28) is
PP g (1 by v, Ry by =N =100 |36, /8, 1205, /01927, + 1))

XDK' (Ab/v,)(-l)xpxqg 1

S e seevamvus e ok Wk s e e 0 e B o - e

J,l

1 k( (36a)
Jp dye
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where
$p=dp+d,.. (36b)
For the level scheme of Fig. 4(c), the dipole-dipole limit of Eq. (30) is
T8 i (£33 B 0py Ry b)e =NFH=11¢ X5, /A, |*®),!° /5)'D . (8B /0,)
x(_l)x.PmllKllKllKllK’ (372)
i, 4, I\, Jp TN L K\, g, g,
where
Qo=—d,=dy =dp =20, =y, (37b)
For the level scheme of Fig. 4(d), the dipole-dipole limit of Eq. (31) is
#0023 by 0y Ry b)y= & NH=1)% X1/ 8,205 /6YD - (8b/0,)
XPprq , (38a)
Jo J, W), d,. 1
where
Qe=dp + 20, +dp 41, (38b)

Equations (35)-(38) characterize the final-state coherence of atom A’ for collisions having impact pa-
rameters b>b,, assuming a dipole-dipole collisional interaction.

V. CROSS SECTIONS AND FINAL-STATE COHERENCES
FOR A DIPOLE-DIPOLE COLLISIONAL INTERACTION

This section is divided into two parts. In the
first part, the RAIC cross sections are calculated
for the limiting caces represented in Fig. 4 and
discussed in the previous section. In the second
part, the polarization of the fluorescence emitted
from state f’ of atom A’ is evaluated,

A. Cross sections

The RAIC cross section is a function of #,,
reflecting the fact that a collision can ocecur at
any time during the on time of the radiation pulse.
However, one can define an average cross section
per pulse for RAIC excitation of /1 p'§(v,) in
atom A’ as

' 'cr (v,, &)
_ e frbdb | at, [ dR, repi(t;b,v,, R,y t,)
(T*-T") dR,

(39)

where T7(T") represent times just before (after)
the radiation pulse and the TR, integration is over
the atom-field interaction volume. In order to
evaluate Eq. (39), an integration over all impact
parameters is required. However, the calculation
of 11 pi¥(t23 b, v, R, £,) presented in Sec. IV is
valid only for b>b,, where b, is the impact pa-

R e T R

i

rameter at which the collisional level-shifting
operator S, becomes important (see discussion of
Sec. IT). Thus, some type of cutoff procedure is
needed to account for collisions with b<b,,

In this paper, the region b <}, is treated in an
extremely simplified fashion; basically, the con-
tribution from b <b, is ignored. This overly sim-
plified procedure is, nevertheless, somewhat
justified. The parameter b, is essentially the
Weisskopf radius associated with the level-shifting
operator, i.e., that radius at which

e
0o= f S.(bo Mt =1, (40)

wiere S, represents the expectatior value of §,
i1 the final-state manifold (typically, 5<b,<15 A).
For b<b, the operator 8, strongly couples all final-
s+ate magnetic sublevels; it is therefore reasonable
- » assume that final-state coherences cannot be
created for collisions with b<b, Consequently,
the b integral for o’§ (K >0) can be evaluated from
b, to ©», Moreover, collisions with b <b, can be
estimated to contribute less than 20% to the RAIC
excitation of final-state populations.® Thus, the
b integral for o’] can also be cut off for b<b,,
although the RAIC cross section evaluated in this
manner underestimates by 10 to 20% the cor-
resgonding cross section calculated without using
a cutoff,

In summary, the cutoff procedure adopted is

had EENE
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one in which the lower limit of the b integral in
Eq. (39) is replaced by b,. This procedure under-
estimates 0’3 by 10 to 20% and provides a good
approximation for ¢'5 (K>0), The perturbation
theory results are valid if "' p'3(z, b, v,, R,, #)
«1 (i.e., the final-state population is much less
than unity). From Egs. (32)-(38), and (C14), one
can derive the validity condition

[X/ 8 |*(br/bo) <1, 1)

where ¥° is a Rabi frequency defined by Eq. (32),
J

1" 0 K (v, 0)g = 87N (=1) %0l | 5, | ) /8D BLY /bo)*(=1) e e, [

11 k{1 vkl k)t ot oK)
X (b{»(‘)z’
g, J, I\, 9, a\{1 1 2\, g, d)

where
(IxSal®y = |¥5s]* (82)/82
and

(8} = ?;-1_—7:-fd'ﬁ‘j:.dtowc('ﬁc,tc)I'/fd'ﬁ,_..
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by, is one of the charactevistic resonant Weisskopf
radii defined by Eq. (33), and 4, is a frequency
mismatch defined by Eq. (25). Since by/b,<4

and }4,|> 10" gec™?, Eq. (41) is easily satisfied
for a large range of field strengths.

The RAIC excitation cross sections may now be
easily obtained for the limiting cases of Fig. 4.
For the case of central tuning, the RAIC cross
section in the dipole-dipole limit for the level
scheme corresponding to Fig. 4(a) may be obtained
from Eqs. (39), (35a), and (C14) as

1 K]
LQJ -Q. Q

Similarly, for the level scheme of Fig. 4(b), from Egs. (39), (36a), and (C14) one may obtain
"o % (v,,0),= 82N (=1)"(9(27,. + DI ((|x;5,. [*)/8) (7, ¥ /b,)*

x(-t)%e:e.[‘ 1 "](-n*‘
Q - @ o,
where

(yise 1B = [xis, [*83) /82,

(42)

(43)

m)

VK ey, (45)
I d,

(46)

For the level scheme of Fig. 4(c), the RAIC cross section calculated from Eqs. (39), (37a), and (C14) is

"1 g X (v,, 0), = 8N (=1)"< ((|x&,|)/ad)®}," /bo)(-1)% €fes

1 1 k[\t 1 k)\1 1 K
X
Q =@, R, 4, I\ I I,

11 k{1 1 K
112\, 4, 4

(47)

Finally, for the level scheme of Fig. 4(d), one may use Eqgs. (39), (38a), and (C14) to obtain

0 oy 0

=§ N 10X I*)/A:)(b;;"/bo)*(-1)°se:e.{‘ ! "] I dp KQOT 1 Klgrep )
Q} -Qg Q J,l J'I 1 J" J'l J‘l

Equations (42), (45), (47), and (48) give the
RAIC excitation cross sections for level schemes
corresponding to Fig. 4 in the limit of a dipole-
dipole collisional interaction. It should be recalled
that these are the RAIC cross sections for excita-
tion from an unpolarized initigl state; the quantit-

*

—
ies ¢; (j=1,0, ~1) specify the polarization of the
external field. As defined by Eqs. (33) and (40),

the characteristic radii 5%’ and b, are functions
of v,; b%* is proportional to v;!/? and b, is pro-
portional to v}/ 1) for a level-shifting operator

which varies as R™" (n >3).

S SR

e SV




The physical significance of the various RAIC
cross sections is discussed in Sec. VI. It may be
noted at this point, however, that the RAIC cross
sections vary as

o' =W x*Y a%Hba/bo) B} , (49)

where ¥ is a constant of order unity. Combining
Eqs. (41) and (49), one finds that, if the pertur-
bation theory is valid, then

o' < b3. (50)

Since by~10 A, the maximum RAIC cross sections
obtainable with fields satisfying the perturbation-
theory requirement (41) are of the order of 100
A%, For larger field strengths, where Eq. (41)
no longer holds, a strong-field (nonperturbative)
theory is needed.

Corresponding results for noncentral tuning
(a#0) may be obtained from Eqs. (39), (35)-(38),
and (C13).

B. Fluorescence

The final-state coherence of atom A’ is conven-
iently monitored by measuring the polarization or
quantum beats in the fluorescence emitted from
state f'. In this paper, the polarization of the
fluorescence is calculated assuming that the ex-
ternal field participating in the RAIC excitation
is linearly polarized in the z direction,

€,50, €¢=1, (51)

and propagates in the y direction,

The fluorescence signal emitted from state
to some lower rtate g’ (characterized by an angu-
lar momentum quantum number J,.) in atom 4’ is
given by®

1 1 K
S« (-1)%72"(-1)'![ ]
n -Q‘ Q

1 1 K
x{ }(""p’q'(v,)), (52)
J’l JI' J"

where the €, (i=-1,0,1) specify the polarization
of the fluorescence according to Eq. (19) (replac-
ing the external-field polarization vector € by the
vacuum-field polarization vector €) and (/o'

is the average value of the reduced density-matrix
element /' p'X of atom A’. Adopting a simple mo-
del, I assume that the lifetimes of the various
#pif , once created by RAIC, are determined only
by the natural decay rate v,. of level f* (i.e., the
natural decay rate is much greater than the col-
lision rate and the frequency separation of the fin-
al states). In that limit

1858 PAUL R. BERMAN 22
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oK ) =R, oK,
X [Np(r - T-)/Y/:] ’ (53)

where 9 , is the A-atom density and N, is the num-
ber of pulses per second, each of duration
(T*- 7). Thus, from Eqs. (52) and (53), one finds

oA i

S(x:(_l)o,,ag"(_l)x[l 1 K]
Qn -Ql Q

1 1 K
J" J/l J“

For an external field polarized according to (51),
it is convenient to measure the fluorescence also
propagating in the y direction and polarized in
either the x or z direction (Fig. 5). That is, one
measures a signal S, characterized by

ol 658,20 §=-E,=7, =0,  (55)

a signal S, characterized by

£,=€,=0, €=1; §,=0, =1, (55b)
and forms the ratio
P=(S,-8,)/(5,+8,). (56)

Before explicitly calculating this ratio, it is
useful to note that the general expression for
p")’r and, consequently, for o’q" is proportional

to
Proseri0e[ L]
Ql "Qc Q

so that, for the excitation scheme of Eq. (51) with
the @, defined by Eq. (27b), one has

Prq==(1/V3) 8,006+ 2/ VE)B 00 - (57

Thus only ¢’ and 0’2 enter the summation in Eq.
(54). Using this fact and Eqs. (54)=(56), one can
derive a polarization ratio

¥

5
i\ S 5
d' d /1/ i
Sa
FIG, 5. Exciiation-detection scheme. The external
field is linearly polarized in the z direction and is inci-
dent in the y direction. The fluorescence from the f*
~g' transition of atom A’, propagating in the y direction
and polarized in either the x direction (S,) or z direction
(Sg), is monitored.




IR IRV AW A Y R &0 1 SEATAD Py #on e 2o PR
e
P 3 LT

22 THEORY OF COHERENCES PRODUCED BY RADIATIVELY... 1859

P(a)=3( 28 L {1 12 }" L% A ) (58)
-~ —ﬁ °
8(2J,+1) Jp dp dp) 1 0,, 4)

Within the confines of the adopted model, the ratio P depends only on relative RAIC cross sections and not
on gbsolute cross sections. Consequently, it is a useful parameter in comparing theory with experiment.

The ratio P is now calculated for the level schemes of Fig. 4. For the level acheme of Fig. 4(a), it fol-
lows from Eqs. (58), (42), and (51) that, for central tuning, A=0,

20(-1)’!":""4":' I3

P,(0)=3 +1
P 9(2‘,’,.'.1)(2‘,"'_1){1 1 2 {: 1 2}{1 1 2}{1 1 2}
Iy Iy 434, 9, 3f V0, 0, 3f . g, d,

For the specific case,
Jp=dp2d(=J,=0; J,=J,=1; P0)=4%, (60)

while, for higher J values, P,(0) is smaller, For the level scheme of Fig, 4(b), one may derive from Egs.
(58), (45), and (51),

(59)

3(_1)J,ul,- -1

P,(0)=3 3(2J,,+1){1 T 2}{1 I 2} +1) . (61)
B R 5 £ 0 A o
Some specific cases are
Jp=dp=1, J,=2, P(0)=¥-, (62a)
Jo J, =0, J,=1, P(0)=1, (62v)
For the level scheme of Fig. 4(c), it follows from Eqs. (58), (47), and (51) that
P =P,. (63)

This result is unique to the dipole-dipole interaction. For the level scheme of Fig. 4(d), one may derive
from Eqs. (58), (48), and (51) that

=1 el - (64)

F0)=3 +11 .
ka(w,.u)(u, +1){ 11 3}01,. Jy 2}{ 1 1 2}
J" Jll J‘. 1']'0 J" 1 J'. J', J‘,

Some specific cases are
Jp =0, J.=d.=1, J,=2, P0)=%, (65a)
Jp=dp=l, d,=d,20, P,(0)=0. (65b)

The physical significance of these results is discussed in the following section.

Vi. DISCUSSION section measurements are not very useful in dis-
tinguishing between various collisional interac-

A RAIC is one of the most basic {crms of phato- tions since accurate theoretical expressions are
chemistry. It is, therefore, of fundamental inter- not available for comparison with experiment (i.e.,
est to understand the collisional interactions tak- there do not exist theoretical calculations in which
ing part in these reactions. The nature of the col- matrix elements are accurately calculated along
lisional interaction is reflected in (1) the total with a proper treatment of small-impact-para-
RAIC cross sections, (2) the dependence of RAIC meter collisions). The dependence of RAIC total
cross sections on detuning A, and (3) the final- cross sections on A does provide a signature for

state coherences produced by RAIC. Total cross- the collisional interaction, provided one uses de-
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tunings outside the impact core of the line |A|7,
>1. A limited number of experiments of this type
have been performed,!® but no definite conclusionon
the interaction potential was reached. It should be
noted that, for |a|7,>1, the RAIC excitation cross
sections are relatively small. The study of final-
state coherences produced by RAIC offers an ad-
ditional method for probing the collisional interac-
tion. In many cases (see below), measurements
of RAIC-induced final-state coherences at central
tuning A=0 (where signal is the largest) are suf-
ficient to provide information concerning the col-
lisional interaction.

Perhaps the most important aspect connected
with the study of RAIC-induced coherences is the
additional insight one can gain into the RAIC pro-
cess. The calculation of final-state conerences
introduces features into the problem that need not
be considered when one calculates tofal RAIC cross
sections. A particularly interesting feature can
be already seen in the calculation presented in this
paper, valid in the impact core of the RAIC profile
and in the perturbation-theory limit., The collis-
ional interaction can be viewed as the interaction
of two unpolarized multipolar fields with atoms A
and A’; the fields are incident from all directions
and lead to the simultaneous (virtual) excitation of
atoms A and A’. Although the f{ields are unpolar-
ized, they are, in general, correlated to one an-
other by the coupling coefficients of the collisional
interaction [see the discussion of Fig. 4(a) below].

The unpolarized nature of the fields arises from
the average over all possible collision orientations,
This result may be seen mathematically in Egs.
{A20) and (B2). In Eq. (A20), starting from initial
density matrix elements p"‘,' , one excites final-
state density-matrix elements p¥ with |K - K’|
€2. This type of selection rule 1s precisely that
produced by the external field acting alone. In
other words, the averaged collisional interaction
does not modify the selection rule determined by
the external field alone—an average collision acts
as a scalar, i.e., as an unpolarized field. Simil-
arly, in Eq. (B2), one sees that, starting from an
unpolarized initial state, one excites reduced den-
sity-matrix elements p'§ with K < 2; the selection
rule is that associated with the external field only.
In contrast to these results, one finds that, for a
collision with a specific orientation, one could ex-
cite density-matrix elements pg from initial den-
sity-matrix elements pf such that |K-&']>2. It
is only the averaged collisional interaction that
acts as a scalar.

Thus the total RAIC reaction can be viewed as
two unpolarized (but correlated) multipolar fields
plus the external radiation field acting on atoms
A and 4’ to produce the i’ - ff’ transition. To

simulate the collisional interaction, the unpo-
larized fields are taken to act simultaneously on
atomsA and A’; one field actsonly on atom A while
the other acts only on atom A’ (in analogy with the
fact that the collision operators act on either atom
A or A’, but not both). The external field acts on
either atom A or A’. Using this model it is rela-
tively easy to give a physical interpretation to the
results obtained in Secs. IV and V for the level
schemes of Fig. 4.

Figure 4(b). For the level scheme of Fig. 4(b),
the collision first acts to produce the virtual state
| fr"). If the collision is now replaced by two un-
polarized multipolar fields incident from all direc-
tions, the coherence properties of this intermed-
iate state are immediately determined. Since the
initial state was unpolarized and the average col-
lision operator now acts as a scalar, the inter-
mediate state must also be unpolarized. Thus,
when the external field completes the RAIC reac-
tion by acting on atom A’, the coherence proper-
ties of the final state f* of atom A’ are the same
as those produced by a radiation field exciting the
r'-f' transition in atom A’ for an initially unpo-
larized state »'. The factor

1 1 Kj\1 1 K
ete, (-1)%
Q} _Q' Q J’o J/' J'o

appearing in Eq. (45) for the excitation cross sec-
tion is precisely that associated with the one-pho-
ton v’ = s’ transition, assuming state »’ to be un-
polarized.

The collisional interaction affects the magnitude
of the RAIC cross sections through a multiplicative
factor. Consequently, the polarization ratio P,(0)
discussed in Sec. VB is independent of the col-
lisional interaction; it depends only on the values
dyydpeyd,, reflecting the field excitation from 7/
-f" followed by spontaneous emission from f’ to
g'. Thus, the level scheme [Fig. 4(b)] is not par-
ticularly well suited for probing the collisional
interaction via polarization studies at line center;
RAIC cross sections as a function of frequency are
needed.

Figure 4(d). For the level scheme of Fig. 4(d),
the field produces a polarized virtual state |ir')
and the two unpolarized f.elds (collision) complete
the transition to state [/‘j’). The final-state coher-
ence of atom A’ can then be thought to be produced
by the external field acting on the i’ = »' transition
and an unpolarized multipolar field incident from
all directions acting on the transition '~ f’. The
transition amplitude for the »’ - f' transition de-
pends on the multipolarity of the collision interac-
tion; this dependence is given by the weighting fac-
tor

i st T T b e eTis i e e
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appearing in Eq. (48). Since this weighting factor
couples K and &', the final-state coherence and the
polarization ratio P, can be used to distinguish
different collisional interactions.

For the dipole-dipole interaction, %2’ =1, and the
collision interaction on atom A’ can be replaced
by an unpolarized electric field incident from all
directions producing the v’ —f’ transition. Thus
the coherence properties of state f’ of atom A’
are the same as those produced by two-photon
excitation of atom A’, the first photon provided
by the external field producing the transition i’
-7’ and the second by an unpolarized electric
field incident from all directions producing the
transition ' =f’. The polarization ratio P,(0) for
the excitation-detection scheme of Fig. 5 is then
easily calculated to be the simple function of
Jisdprdpesd . given by Eq. (64).

Figure 4(a), For the level scheme of Fig. 4(a),
the two unpolarized multipolar fields incident
from all directions first excite the virtual state

|7f') and the external field acts on atom A to com-
plete the transition to state | J). One might think
that the final state /' of atom A’ would be unpolar-
ized since it was produced by an unpolarized field
incident from all directions. However, this con-
clusion need not be true owing to correlation ef-
fects between the unpolarized fields. This effect
is best illustrated by the case of J,=J,=0, J =1,
and an external field polarized linearly in the 2
direction. In order for the overall Am =0 selec-
tion rule to be satisfied, only that part of the un-
polarized field producing a &m =0 transition is
utilized. Thus, only a part of the unpolarized field
acting on atom A is used. Owing to the coupling
coefficients A} in the collisional interaction, this
result implies that, correspondingly, only a part
of the unpolarized multipolar field acting on atom
A’ contributes in the i’ - f excitation. This result,
in turn, implies that state /' can be polarized.

For the conditions of Eq. (60), a polarization ratio
P,(0)=% was found. Since the polarization ratio
for case Fig. 4(a) is a function of the multipolarity
of the collisional interaction, it can be used to pro-
vide an indication of the collisional processes par-
ticipating in RAIC.

Figure 4(c). The analysis of the level scheme of
Fig. 4(c) is similar to that for Fig. 4(a), except
that the field acts on atom A’ rather than on atom
A. For the dipole-dipole interaction, in which the
external field and the collisional operators have
the same multipolarity (k=k’'=p=p’=1), the RAIC
cross sections for cases Figs. 4(a) and 4(d) are
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proportional to one another; for other collisional
interactions, this proportionality is lost.

In order to have a more complete picture of the
final-state coherences produced by RAIC, it is
desirable to extend the theory to include the cases
of large detuning (]A]7,>1) and large field
strengths (nonperturbative solution). Such exten-
sions may pose some interesting problems in the
average over collision orientations, since the col-
lision interaction no longer enters linearly in the
final-state amplitude. Owing to this nonlinearity,
the analog between an average collision and an un-
polarized field may no longer be useful.

In summary, I have presented a calculation of
the final-state coherences produced by RAIC in the
weak-field limit that is valid in the impact core
of the RAIC excitation profile. The resulting final-
state coherences can be monitored by standard
techniques (polarization of fluorescence, quantum
beats) and may provide information on the collis-
ional interactions occurring in the RAIC reaction.
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APPENDIX A

Appendix A is divided into three parts. In part
A, some notation is introduced and the relation-
ship between the direct product and irreducible-
tensor subspaces is established. In part B, the
relationship between the two-particle and single-
particle (reduced) density-matrix elements is
given. Finally, in part C, the final-state density-
matrix for RAIC is calculated.

A. Relationship between bases

A state of the composite AA’ system is repre-
sented by a capital letter, e.g.,

VB =)= IN1S") =l fdgml f1dpemyp)?
(A1)

where it has been assumed that the angular mo-
mentum of a level can be represented by aJ quan-
tum number, The angular momenta appearing in
the direct product basis (A1) can be coupled in the
standard fashion,
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| FY=\ff'dydpd pmp)

dy Jy dy
{m Jlijm;)lf’J;'my'Y) (A2)

y My My

where the bar indicates this coupled basis. As in
the main text, I use a summation convention in
which all repeated indices (not including their ap-
pearance in phase factors or frequency denomina-
tors) are summed over,?

Matrix elements of the density-matrix operator
in the barred basis are related to those in an ir-
teducible tensor basis, 771p%, via the transfor-
mations

Jy J";l K7__
P77=(Flo| F\) =(~1)'F,""F, Ry

mg -m;‘ Q
(A%a)

J

Jge
K’O‘(}" Fu T, T)s(- l)r‘--'x (- l)"’"’ !

,m,om

along with the corresponding inverse transformation,

Ji, Iy J-,-x][d;- I
o ms =ms
my, My mylimr -my,

[JF i K][J‘ y JT][
b
my ~mg, Qlm m; my

x I‘{,}: (my,mye, Mys Mgty Myo, Mgy My, mq)
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- _ I3 J5, K
il = (~1)F,""F,

my -my Q

x(FJzmszip| FlJ-,-.1 m‘—,,l) , (A3b)

where the total J and m ; values of the barred
basis are explicitly written in the right-hand side
of Eq. (A3Db),
The time rate of change of density-matrix ele-
ments produced by RAIC can be expressed as*
p = I“,’}l Pu 1 (Ada)

or

—F‘; = K'QO(F:FnT’T;)TEPg: . (A4D)

The relationship between the I''s may be obtained
from Eqgs. (A1)-(A4) as

J[":ll "J{ Ji‘
My MF
KI
QI

(A5)

B. Reduced density-matrix elements
The reduced density-matrix elements for atom A’ are defined by

Pprgy = ST LIS

(A8)

In terms of the matrix elements of irreducible-tensor operators defined by Eq. (23a), one can use Egs.
(A1)=(A3) and some elementary properties of the Clebsch-Gordon coefficient to derive

I'/;plg = (= 1)1,; CIFtig=k [(2"? + 1)(2']?1 + 1)]\/ §

J7 J5 K
5
J, J J % phpq (ff:J,J,.J,,ff J’J’i‘lil) . (A7

Equation (A7), in which the { } represents a 6-J symbol, enables one to calculate the reduced density-
matrix elements of atom A’ from the two-particle density-matrix elements. Similarly, reduced matrix

elements of atom A are given by
Pay, = SFRLALSY)

and

(A8)

K

JF I3 —
fhpg=(—1)"!"’!;”!'"[(ZJF+1)(2J;1+1)]‘/2§ J, Jfl J!} FRpg (Ff'9ydpd5 3 £ f 'y dped5) . (A9)
1
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C. Calculation of FF1,%
Starting from Eq. (10), I now derive an expression for ﬁ‘p{,‘(t; ;1 b,0, ,R., t.). Equation (10) may be
written
aglt])=(F|T|1)a, (t]), (A10a)
where
" " )
(FIT\) =) [ ° (FIFUF, 0 1)et%ay | (A10D)
te
Equation (A10a) could equally well be given in the coupled (barred) basis as
a§])=(F|T|T)ap(¢]) , (A11)
so that the final-state density matrix is
Pr7,(t336,0,,0, R, t,) =(FH TN FITIT oo, 7). (A12)
The matrix elements of T are expanded as
- I 9T 6],
(e 1VWT =" T
(FIT|T)=(~1)T"" my -mpg| 16 (A13)

Equation (A32) is used, and some identities involving the angular momentum coupling coefficients are em-
ployed to transform equation (A12) into

FRapk(e25 b, vy, Ry, 8, )= (= 1)¥F 46" 0T 4K (L 1)0'4Q'[(2G + 1)(2G" + 1)(2K + 1)(2K’ + 1))} /3

K K X G G X F.I'XK —_
X Q -¢' m|lg -g' m T Tx K' H(F:Fpr)ru G,G'.g,g')”‘P‘é'(t;').

GG X

(A14)
where

H( F’ Fl’ T, Tu G! G' v &) g' ) "3‘(8"'2)“l f 4 ;TT.,G (;"T‘ 1‘,‘01 )‘

(A15)
and the quantity in large curly brackets is a 9-J symbol. The quantities ‘_'Tff may be calculated by (i)
using Egs. (A13), (A10b), (6), (13), (18); (ii) expanding all intermediate states appearing in Eq. (6) in
terms'of the barred basis; and (iii) using the Wigner-Eckart theorem to evaluate matrix elements of (1 P
and *'VE, One obtains

FIFE= (~)VF TR R (B (W [ EXE | V& T) (wyy )™
by wesc [x 1 c] K 16
sy 2 ' . .
X (i) (v') ZHOPRLTNG | PP S,
+ (=1 F T (T v O BB (1 ) | 1) ()™

, k1¢l{x
x(m)-x(vi) uAg(b,v,,e;A)e,t[ ]§ 1 G}sc

(A16)
Q Qe JF I3

where 'A% (b,v,,6;4) is defined by Eq. (16b), ([ ***]|) is a reduced matrix element, € ; i8 defined by
Eqs. (11)=(19), and
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(A17)

Q1=1, Q-]::-l’ Qo=0-
Equation (A16) and its complex conjugate are now ingerted into Eq. (A15), and Eqs. (15) and (21) are

used to arrive at
b
H(Fyrurs Tu G, G',g’g')=(k;8"
r

[K 1 c] K1 c']
Xl Q elle’ e, C(F, 1,6, k, k' ,K)[CF,,T,,G',p,0' ,K)]*,  (A18)

2
) (2K +1)efe, WAL, (b,0,,0;4) " ‘Agl (b,v,,0;A)]*

g
where
- ey e K1G¢G

C(F,I,G,k,k',K) =(_.l)Si;vlfﬂl!dﬂl(w")-l(lp|| (1-1 r)(l)“ExE“n V(K)”ng %

Jy Ji I
- =11aat K 1 G

+(=1)TBP0 () F||™ V""||E)<Ell(u,)“’ll77g g (A19)

i Jp Jy

The quantity C is easily identified with the four diagrams of Figs. 2 and 3.
Combining Eqs. (A18) and (A18) and carrying out the summations over magnetic quantum numbers, one

obtains
2
?hplo'([;; b 1Vry ﬁe ' 'c) = (' l)Nl'Ni'OoK' 'x'x(- 1)0'@!%(%—54)
1 4

' X
x €, [(2G +1)(2G" +1)(2K +1)(2K’ +1)]*'=[ ]
Q -Q' m,

FF K

1 1 X i ; 11 x)(FF
*le, @, m, AR (b, 0,03 8" A%0,0, G N, o H(4T T K
G G X

x C(F,T1,G,k, k', R)CF,,T,,6,p,p', R Ml1pK (7). (A20)

It i5 clear from this equation that |k’ - K| <2, i.e., that the collision acts in some way as a scalar op-
erator (see Sec, VI). Reduced density-matrix elements may be obtained from Eq. (A20) by use of Eqs.

(AT) and (A9), Density-matrix elements in the magnetic sublevel basis are related to those in the ir-
reducible tensor basis by Egqs. (A3) and (A2) or, for reduced density-matrix elements, by Eq. (23b).

APPENDIX B
Unpolarized initial state

In Appendix B, the reduced density-matrix elements for atom A’ are calculated for an unpolarized in-
itial slate. An unpolarized initial state corresponds to
Tho¥(1;) = (27 + 1)V N} 677, 84,8 00 (B1)
where N, is the total number of initial states. Using Eqs. (A7), (A20), and (Bl), one may obtain after a
little algebra® the reduced density-matrix elements for atomA’,

1'1in/K R = 1)0 724K 4K 4Go G’ ?ﬁg 2 '
'k (t530,0,, R, )= ;(— IR, 225 (26 +1)(26" +1)
r

x (@75 +1)(@J5, +1)} AN, K +)W AL, 0,,0;)

><"'A'gt(b,v,,O;A)l‘e}!.(-1)°a[1 1 K\l 1 K
Q, -, Q|G ¢' K

G G K
X
Jpe dyy Jy

J: Js Kl _ _
;’l ) C(F,I,G’k,k"}(')
Ji, I3 Ji

x[C(F,,T,6",p,p",K")]* . (B2)
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The product of the C’s can be calculated| explicitly and the final expression simplified using identities in-
volving the angular momenta coupling coefficients,®

One obtains 16 terms corresponding to the square of the four terms contributing to the amplitude in Fig,
2. The result may be written in the form

'fip'%(t2:b,0,,R,, ) = (b‘g ) NyMAKL(D, v,,0; A)[»'Algt(b,v,,o;A)]*gge,(-l)O.[l 1 K]
@, -Q, @
x 32 tulb 00 KD, (89)
where §,, represents the co;;r.i‘bution from diagram o and the complex conjugate of diagram g in Fig. 2.
Explicitly,
Soe =l +wp =0 ) @gtwye =@ )] (= 1) 0 Tardp e gy Ty ok ot
S T O | A | A P T DTG DA | il LTV |k a0
xllK%ka ¥ o ke pr &
Jy Jg IV, J, J)(p B K J'I Jp dp

) (B4)

..’=[(w' "‘(0'0 _w‘)(w’ +Wgr _w’)]-l(_1)X-QI.OJ‘IOJ’-I"I'NM»O
xCf |1 el adel [T acr T || D8 1T @ |l o | ad
111({»1: l}kpl(' Bop o1 (85)

X ’
o dog JA W P KV, 0, 3 Ve Iy I

830 =[(w, +w,0 =W (Wptwg =w) (=18 p 70 [T, +1)(2k +1)(2k’ +1)]
PP N | [T | A T TR A RO Tt DTG b T
X (d'|| TN | #7y» ; Jl' f ’ (B6)
" Tn e
.= [(w, +wp -w) Wy +wye - “’r)]'l(' 1)740944 74T g0k  sEed prok" epep’od g0

(|l |eXa|w | Jeysce || T T e (|72 el 797 ||y

11K
By k\k p K
p LSRRV A A

30 = [0y +wpr =0 0wy +wgr = @p)] (= 1) a0 eI ST gk

x(fF [ |l ([ 1y el TP F TP a1 ] )
x(FllTr o ||any
K1
xgk p 1§§k » 1% e ay s (58

LA Y J)
pkKJ,JJJJk,

81 = LWy +w,0 =0 )(Wg +wye = W, )] (= 1)74 T4t -TgeoK = dpt Iy oK e kel opey’
x| O leXallw o T X Al TP | e |77 |4
(ATl

1 1 Kp\- 1\ p* 1{\R p' 1
) p poale 1] )
J, Ji J.l Jd J‘ J’ p B K u’i J.: J‘c

e T
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930 = LW +wgr =)W, +wg0 =) (= 12T 401-9p = Ip Ko Tgrok’
x [(2k +1)(2k" +1)]"16,,8,0p (' || 7 || €' X’ | 7] [ 6)*

< [CFIIT® ]| ||l e fjaysdt L EQYR de B (810)
Iy T T\ Iy 1

L4
900 = [(Wg @y =)Wy +wy0 =g )| (= 1) TurTue =Tt Rk epptdg=dyd gkt
x (|l ||a|u? [ { TP T [T [l il 70 |iry
1 oy K
xl Kka{pka}gkp ’ (B11)
J. J‘ J‘ J’i g, J‘c ' B K \J‘ J. J,

8o =W, +wyr = W)Wy + Wgr = wp)] 7 (= 1)HT MG ALALRL AL/

X(ellp D (@ || w O i AL TP e U TN N T N8 LT
dpy K dp

Ep 1 k
pRKY |4, d,

p 1R
Beg=[ (W + W, 1 = wp) (W + Wer = wp)] "1 (= 1)1+ 2% + 371 48" [(9k 4 1)(2k! + 1)) 2

X Opp Syege (e [l 8" i) Cat | P Uiy AT MUD] 3N T e

, Jo Jp K 1 1 K
XL aysd T , (B12)
Jo Jg R\, dg dp
and
Gaplk k!0, 0" KK, ', f 0= (=1)11771' (8ol b, kB KK, fL )" (B14)

Some of these terms may vanish owing to the selection rules appropriate to the level-coupling scheme and
interatomic potential under consideration.

APPENDIX C

Dipole-dipole interaction

In Appendix C, the quantities A¥: and **'A% are evaluated, assuming a dipole-dipole collisional interac-
tion between atom A (dipole-moment operator [I) and atom A’ (dipole-moment operator f’) of the form

-

w=(I+@ R*-31 - RI'-RV/R®, (1)

where R is the separation between the atoms, For a given collision geometry, R is a function of 7=1¢ - ¢
(the collision is centered in time at {=t,), b, v,, and ©,
Writing £ and I’ in the form of Eq, (20) and defining
R1=-(R‘ ~iR,) , R_,= R, +iR,
V2

V2

one may rewrite Eq. (C1) as

» Ro=R,, (C2)

. =A::' (7 ’ b’ U, ’ e)“: (&1' ):’ > (C3)
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where

AL (7,b,0,,0)=[R3(D0 041 = 0,y 0,! -y =By \=y O¢ly) =3 R Ryt 1 /R® . (c4)
Equation (C3) has exactly the same form as Eq. (12) since u} and (u'); are components of irreducible

tensors of rank 1.

The quantities of interest in evaluating RAIC cross sections are the Fourier transform of the Ay, de-
fined by Eq. (16a). Using Eqs. (C2), (C4), and (16a), one finds

td-t
A, (b, v,, 8;8)=(v, /D)™t j“:' AL, (1,0, v,,0)e"4Tar (c5)
¢ %
where
Aﬁ(T' bv Uy, 6) = [Ai‘x-x('rv b: Uy, 6)] ¥z S(Ri _RZ’ - ﬁR,R,)/ZRs ] (CGa)

Al(r, b, v,,0)=4(7,b, v,,0)= -[Ad}(7,b,v,,0)]*

""'[A(‘)l-x('rv b, v,,6)]=3R,(R,-iR,)N§'R° ’ (Céb)
Ag("v b,v,,6)=(R’-SR= )/R® ’ (C6ce)
Aﬁ.l("' ) b’ Ve, e) =A‘-‘u(7, b, Uy, 6) = fA&‘,(T, b, Uy, 6) o (CBd)

The corresponding equations for the *A§ defined by Eq. (14b) are

&Y
A% (b, v,,0;4) = (1, /ble™tEte f ¢ A% (1,5, v,,0)e"*4dr ©n
t3=4,
"Ag (7, b, 0"9) =0, (C8a)
nA‘Q(‘r’b) v,,9)=0 (Q‘lpo)‘l) ’ (Ceb)
MAYT, b, v,,0)=[ A2, (1,b, v,,06)]* == 3(R}-R? - 2 R,R,)/2R" , (C8c)
HA¥T,b,v,,0)=~[143,(7,b,v,,0)]*=6R, (R, ~iR,)/R®, (c8d)
HAY(7,b, v,,8)=3(R*-3R3)/6Y/2R® , (C8e)

It should be noted that the RAIC cross sections depend only on the quantity
B'Ag (b, v,;8)="AK (b, v,,0;A0" AL: (b, v,,0;4)]% . (of)
The fact that A, is independent of © follows directly from Eq. (15) and the orthogonality properties of the

rotation matrices; from a physical viewpoint, this result is to be expected since the calculated cross sec-
tions cannot depend on the choice of the reference geometry ©=0.

Straight-line trajectories (C5) and (CT), ore obtains
Under the assumption of straight-line collision All(b,v,,0;A)= ~ ™10 p=3
trajectories, the various A’s are easily calcula- « aK (a)- %K ()], (C10a)
ted. Taking as a reference geometry R, =v7,
R,=0, R,=b, and letting (¢} -¢,) =2 in Egs. Alld,v,, 0;4)== V2 e=tbt b=%a2K (a), (C10Db)

o, v L1 £ e A s bt £ R DiSra s T

TR e A LAY
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AN, v, ,0;A) = - 2e™ M b~

X[fszz(a)—aK,(a)], (C10c)
NAZ(b, v,,0;4)=Al0, v,,0;4), (Cila)
BAZD, v,,0;A)=V2 A} (b, v,,0;A), (Cllb)
HAYD, v,,0;A)=3A (b, v,,0;4)/VE , (Cllc)

where
a=absy, (C12)
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and K,(a) is a modified Bessel function. The
dimensionless quantity

Dx(a) =t L HAYG, v,;8)1°
is given by
Dyla) ={2[aK (@) - a*K (@)} + Ba*{ K, ()]
+6[a?K (a) - aK (@)]?} 6y, . (C13)

For central tuning, o =0, Eq. (C13) reduces
to

Dy (0) =85, . (C14)
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Bopy Wpit)/0), 10 = rj,’;l R URTAN
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Theory of collisionally aided radiative excitation in three-level systems

S. Yeh® and P. R. Berman
Department of Physics, New York University, 4 Washington Place, New York, New York 10003
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A theory of collisionally aided radiative excitation (CARE) for three-level systems in the weak-field limit 15
presented. Cross sections for the excitation of three-level atoms by two off-resonant pulsed radiation fields in the
presence of collisions with structureless perturbers are calculated. Analytic expressions for the cross sections as
functions of atom-field detunings are obtained under usual classical-trajectory and rotating-wave approximations
using perturbation theory for various regions of detunings. Examples for the resulting excitation linc shapes are given
mostly for van der Waals potentials. A dressed-atom picture of the CARE processes is discussed. Emphasis is put
on an interesting effect arising from the interference between the “stepwise™ and the “direct” channel of excitation.
Such an interference effect manifests itself as modulations in the total excitation cross section as a function of

relative interatomic speed in some cases.

1. INTRODUCTION

In this paper, we present a theory of collisional-
ly aided radiative excitation (CARE) for three-
level systems in the weak-field limit, CARE in
two-level systems has been the subject of many
recent studies.! Approximation schemes, valid
in different regions of atom-field detunings, have
been used and verified by numerical calculations.?
In three-level systems, however, calculations
have been limited to a narrow range of detunings,?
It is thus desirable to have a theory which is free
from such limitations,

In Sec, II, we state the problem to be investigat-
ed and define the conditions under which the treai-
ment of this paper are applicable. The complexity
of a three-level CARE problem over its two-level
counterpart is due partly to the fact that there are
two detunings which can be independently varied.
In addition, the collision-induced energy shifts
of these three levels can be of either a positive
or a negative sign (relative to the detunings), lead-
ing to different physical situations, It becomes
necessary, for the convenience of presentation,
to classify the cases according to the sizes and
signs (relative to those of the collision-induced
energy-level shifts) of the detunings, This is done
in Sec, III. A “dressed-atom” picture of the phy-
sical processes will be given in Sec, IV with dis-
cussions of interesting interference effects for
some cases, In Sec, V, the basic equations in-
volved are given. The solutions and results for
cases as classified in Sec. III are obtained in Sec.
VI, In Sec. VII, we discuss the advantages of
using CARE over conventional atom-atom col-
lision techniques to study the atom-atom interac-
tions, The paper is concluded in Sec, VIII, Ap-
pendices A and B provide some caiculational de-
tails,

Supported by the US. Office of Haval Research
under Contrast de. 1196014-77-C-0553.

Il. THE PROBLEM

Consider a three-level active atom, which may
have one of the configuratinns shown in Fig, 1
with level separations Nw,, and fiw,,, subjected
to two off-resonant incident pulsed radiation fields
of frequencies w and w’ and amplitudes £(/) and
E'(t). The atom simultaneously undergoes a col-
lision with a structureless perturber, Under some
conditions to be stated in this section, we calculate
the 1~3 excitation cross section as a function of
detunings,

The fields E (/) and E'(t) are assumed to drive
only 1-2 and 2-3 transitions, respectively, with
interactions characterized by the coupling strengths
X(8)= 1,E/2h and X'(1) = kyyE'/2h, respectively,
where i, and #,; are the dipole matrix elements
of the respective transitions, The collisions are
assumed only to shift the energies of the active-
atomic levels without coupling them (sometimes
referred to as adiabatic approximation), a gener-
ally good assumption in the case of electronic tran-
sitions in the optical regime because of the lack
of interatomic potential curve crossings (except
perhaps at extremely small internuclear distance
which cannot be reached with ordinary thermal
energy).

If the atom-field detunings & and &', defined as
A=w- w, and &'=w’ - w,,, are larger than the
Doppler width, and/or if the incident pulsed fields
are adiabatic, the excitation cross section are
regligibly small in the absence of collisions, In
both cases, the collision can greatly enhance the
excitation by either breaking the adiabaticity or
shifting the energy levels of the active atom to
resonance (instantaneously) with the external
fields. We shall confine the discussion of this
paper to detunings larger than the Doppler width
and assume that the pulses are slow enough such

1403 © 1980 The Amencan Physical Society
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i

—_ 3 the inverse of the detunings and the pulse dura-

tions, In such a pressure regime, one can take i

the CARE rate to be linear in the perturber den-
sity and calculate the CARE cross section for a
single collision, from which the CARE rate is ob-
tained by averaging over all possible collisions.
| This procedure is followed throughout this paper.
The conditions on the pulsed radiation [Eqs,
(a) (2.1)-(2.4)] can be met by ordinary laser pulses
which have typical pulse lengths (210-° sec) much )
longer than the collision time (~10-!2 gec), The
pressure range we are considering is typically
of the order of 10 Torr or less in order to satisfy
e the conditions stated above,

1Il. CLASSIFICATION

3 For the convenience of presentation, the three-
| level atom is assumed vo have a configuration
shown in Fig, 1(a), unless otherwise stated, The
(b) theory to be presented is equally applicable to
other configurations with suitable changes of the
signs of detunings and of the relative energy-level
ghifts.
Consider such a three-level active atom [Fig.
1(a)] undergoing a collision with a structureless
3 perturber. The energy levels are shifted during
a collision, as shown schematically in Fig, 2,
for some specific collision impact parameter b
' and relative velocity ¢ in a manner depending on
the assumed interatomic potential, The relative
shifts of these levels can lead to an increase or

2 decrease in the atomic transition frequencies over
their unperturbed values, In the case shown in
(c) Fig, 2(a), both the 1-2 and 2-3 transition frequen-
FIG. 1. Configurations of a three-level active atom cies decrease (shift toward the red), and one
for CARE. (a) Upward cascade, (®) inverse v, and (c) speaks of (relative) attractive interatoraic poten-
v, tials. Conversely, the transition frequencies in-
crease for repulsive potentials. Although differ-
ent combinations of attractive and repulsive po-
that the pulse durations are much larger than the tentials for the 1-2, 2-3, and 1-3 (two-photon)
collision time, and that during a collision the field transitions may occur in a three-level system,
amplitudes are constants; that is, we shall be concerned only with attractive inter-
I A| | al>w @.1) atomic potentials, This restriction (to the at-
) by : tractive relative interatomic potentials) is for the

where W, is the Doppler width, convenience of the presentation; the theory to be
presented is, nevertheless, applicable to all types

if‘ﬂ, X)X~ 0, (2.2) of interatomic potentials,
, What is essential in the theory is the existence
dx , a’ G, (2.3) (or lack thereof) of the collision-induced instan-
dt’ dt taneous resonances during a collision, When the '
and detunings equal (both in signs and in magnitudes)
the relative energy-level shifts, resonances occur,
X(8) = X0, X'18) = Xg @2.4) In Fig, 2(a), inst?;ltaneous resonances occur at
during a collision, £7, for 1-2 transitions, 7, for 2-3 transition, and
In addition to conditions (2.1)-(2,4), the per- £77 for 1-3 two-photon transition, Such instan-
turber density is assumed to be low enough that taneous resonances enhance the absorption of ra-

the time between collisions is much longer than diation, especially in the case of laige detunings,
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FIG. 2, Energy levels of a three-level active atom
during a colllsion, schematically shown for a relatively
attractive interatomic potential. (a) In a bare-state—-
classical-field picture, the energy levels, thus the de-
tunings, are time dependent. As shown, vesonances
occur at t1y for 1-2 transition, +7§for 2-3 transition,
and +7§ for 1-3 two-photon transition. ®) In a dressed-
state plcture, the resonance points {n (a) ave trans-
formed into level crossings of the dressed states.

The studies of two-level CARE (Ref, 2) have
led to the understanding that the instantaneous
resonances are important when the detunings are
much larger than the inverse collision time 7;*,
ive., |detuning|'rc »1, For Idetuninglrc <«
[impact region (/)], the existence or lack thereof
of instantaneous resonances is unimportant, and
the absorption cross section varies as ldetuningl'
irrespective of the sign of the detuning, The case
of |detuning| 7_>- 1 can be divided into two regions
according to the sign of the detuning relative to the
interatomic potential: the quasistatic (@) region
where the instantaneous resonances can occur
(e.g., red detunings for attractive potentials),

2
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and the antistatic (4) regions where no instantan-
eous resonance can occur {(e.g., blue detunings
for attractive potentials).* In the three-level prob-
lem, classification of the cases is complicated
by the possible combinations of /7, @, and 4 regions
for A, &', and & +4’, If there is no constraint,
there would be a total of 27 cases to be discussed;
the fact that A + A&’ cannot be independently varied
and that we restrict our discussion to attractive
potentials reduces the number to 13 cases.

The cases to be considered are listed in Table
I according to the region of each detuning, In the
third column, the conditions, appropriate for
attractive potentials only, are also listed to help
clarify the cases considered, In subsequent sec-
tions, results are given mainly for attractive van
der Waals potentials, although the treatments are
generally applicable to other types of potentials,
Table I exhausts all possible cases where attrac-
tive potentials only are considered, It does not,
owever, include all cases for a general inter-
atomic potential. We choose not to include all
possible cases because it is impractical to do so
and may lead to confusion, At any rate, for the
cases no! included, one can find applicable treat-
ments in one of the cases included.

It is natural to group together the cases in Table
I for which the mathematical treatiments are simi-
lar. In Sec. VI, we present the solutions and the
results according to these groups. We group
cases A, B, and C (4 in the / region), cases D
and E (&' m the / region), and cases F and G (&
+4’ in the ! region). Cases H and I, which have
two of the three detunings m the ¢ region and the
third detuning in the A region, will be grouped
together, Case J, with all three detunings in the
Q region, is the last and the most interesting case
to be treated. Cases K, L, and M will not be discussed
since at least two of the detunings are in the 4
region, leading to exponentially small excitation
cross sections, Although numerical calculations
can be performed to obtain cross sections for
these cases, reliable analytic approximation
schemes have yet to be developed.

IV THE DRESSED-ATOM PICTURE AND GENERAL
CONSIDERATIONS

n this section we shall give a general descrip-
tion of the physical processes in terms of the
“drassed-atom” picture® (sometimes referred tu
as the atom-field diabatic representation)® in
which the eigenstates of the Hamiltonian of free
atom +free fields + atom-field interactions (1, e.,
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TABLE 1, Classification of cases.

>4

2

A A’

Conditions appropriate for attractive potentials

Case

DRLOODODOBIO NSNS~

PODODDBOD~N~NDBO~

BE2LOOON~DODO~

[Afre<1, AT «1, |A+4'|T.«1

|AlTe <1, |A"| 7551, |A+A" T 1, A'<0,A+A'<0

AjT <1, A7, > 1, A +A' 1,1, A’>0,A+4A7>0

Al »1, |A'|1,<1, |[a+A!1,>1, A<0,A+A'<0
Al > 1, |Afr,«1, |[A+AT.»>1, A>0,4+A' >0

Al >»>1, |A7)7.»>1, |Aa+A'f1.«<1, A<0,A'>0

Al »1, A1 >»>1, |A+4AYT,«<1, A>0,4’<0
lajTe»1, |a7|7,»1, |8 +4 1,1, A<0,4'>0,4+4'<0
[Ajr.»1, A1, >>1, |A+4A T, »>1, A>0,4'<0,A+A<0
At »1, JA% T, »>1, |8 +48"| 1. >>1, A<G,A'<0,4+4A'<0
alTe»1, a1 1, |a+Al 7,1, A<0,A’>0,A+A%>0
ajr.»1, [a'1.»1, [A+4A 1,51, A>0,4'<0,A+A'>0
[AlTe»1, |A'|7 1, |A+a T >»>1, A>0,4'>0,A+4A'>0

e~momEOOW >

4 Not treated in this paper.

o atomic dressed states) are taken as stationary

erally linear combinations of the “bare states”

states and the collision, which couples the dressed
states as well as shifts their energies, is treated

as a perturbation, The dressed states are gen-
)

(i.e., eigenstates of free atom + free-field Ham-
iitonian) and, in the weak-field limit, can be ap-

proximated as

ID=(1 —x’/ZAz)|1,n,n')+(x/A)|2,n ~1,n" +[XX'/A(A+A')]|3,,¢ -1, ~1),
D= (=x/8) 1, 000+ (1 = X3/282 - x'3/283) {2, n = 1,0 )+ (x/ &) 3,1 = 1,0 = 1), 4.1
)y =[xx' /8 (A + a1, 0,0y = (X 78N 2,n = 1,0") +(1 =X2/28"%)|3,n-1,n"'=1),

with eigenenergies

Ey=E, +nliw+n'liv’+x/ 48,

Epy=E,+ (- 1w +n'hw' -x¥/a+ x' ¥4, (4.2)
Eqy=Ey+ - Diiw+ ('~ Dhiw' - x'3/4,

where E|, E,, and E, are energies of the atomic
states 1, 2, and 3, respectively, with separations
E; ~E =liw, and E; - E,=lw,,; the {lelds are
represented by number states with photon num-
bers n and »' for fields E and E', respectively,
For adiabatic pulses x and X, n and »’ take on the
instantaneous values.

In the weak-field limit, from Egs. (4.1), the
dressed states II), |II), and |1ID) are composed
almost entirely of only states |1,n,n’), i2,n~1,
n'), and [3,n-1,n' -1), respectively, with some
small corrections; their energy separation are
approximately Eyy - E;~ -0, Eyyy - E;=-4', and
Ey - Ey= ~(4 +4'); during a collision, the time
dependence of £y, E;, and Ej; are almost the
same as E,, E,, and E;, Thus, the instantaneous
resonance points in Fig. 2(a) (i.e., £7,, £7,
and +7;) are transformed into crossing points as
shown in Fig, 2(b}, and a physical picture of
CARE can be established similar to that of or-
dinary (radiationless) inelastic atomic collision,
which has been under active research for several

—

decades.

The coupling between the dressed states by the
collision is characterized by the off-diagonal ma-
trix elements

alvlm=ajvein= x/ave,
atlu@ = aulvnm= /anvi@,
alowlnn = anlve |1

=[xx/a(a+ V(1) - [x /8’ (& +aNV () ,

4.3)

where U(¢) is the collision interaction which is
diagonal in the atomic bare-state basis, V()

= @|un|2) - aluwl1) ana V()= 3lu®)]3)

- {2iU(8)[2) are the collision-induced relative
energy-level shifts between states 1,2 and states
2,3, respectively, The off-diagonal matrix ele-
ment {1[U(:)|111) is responsible for the “direct”

(I ~1IH1) excitation corresponding to two-photon
absorption in the bare-state picture, while
alulny and a1lu ) form the chain for
“stepwise” (I—~1I-1III) excitation, By studying
these matrix elements we can better understang
dominant excitation processes in different regions
of detunings, It is clear that when la+a]

<« [a],a’[, the direct process is the dominant
one. When |a| (or |4’]) is smaller than the other
two detunings, Eq. (4.3) suggest that the “direct”
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and the “stepwise” processes have comparable
contributions, However, as we shall see later,
cancellation between the two processes occurs,
and the stepwise process remains dominant, This
will be seen when the detailed calculations are
given, '

In the above discussion, the effects of the col-
lision-induced curve crossings (i.e., of the col-
lision-induced shifts of the dressed states) have
not been included. As discussed earlier, the
crossings are particularly important when the
detunings are large, corresponding to large sepa-
rations between the dressed states, When the de-
tunings are small (corresponding to small-level
separations between the dressed states), however,
the crossings do not provide major contributions
to the excitation, since Fourier frequencies are
induced by the collision to cover the energy mis-
match, To show the importance of curve cros-
sings, we choose, in the remainder of this sec-
tion, to discuss only the case where all the de-
tunings are in the @ region, since an interesting
interference effect occurs in this limit,

The interference effect is better described using
a classical-trajectory approximation of the col-
lision event. In this approximation, crossings,
as shown in Fig, 2(b) in the time domain, occur
at corresponding internuclea: distances R(7,)
=R, R(73) =R}, and R(7,)=RY, For collision
impact parameters such that the closest approach
between the active atom and the perturber is smal-
ler than R,, Rj, and Ry, all the crossings oceur
during the collision. For larger impact param-
eters, some or all of the crossings are not in-
duced, and {1e excitation probability is reduced
(as compared to the all-crossing case) by orders
of magnitude, Hence, collisions with larger im-
pact parameters do not contribute significantly
to the excitation cross section and can be ignored.
Consequently, we consider only the collisions "vith
impact parameters small enough to induce all the
crossings, Furthermore, since the radiation
pulses are assumed to be adiabatic, the atom-
field system is in its dressed state |I) before the
collision (which comes from adiabatic following of
bare atomic state 1), and only the dressed state
IIII) will adiabatically follow the pulses back to
bare atomic state 3, Hence, calculating the In
- IIII) transition probability is equivalent to cal-
culating the 1 =3 transition probability,

When the detunings are large ([a], ]a’], |a
+ 4’} 5 inverse col'ision time), all the transitions
occur well localized near the crossings. It is not
difficult to see that there are four channels for
the h)-' iIII) transition to occur, two from the
stepwise process (I ~1I~1I) and two from the di-
rect process (I—~1III). With reference to Fig. <),

22 THEORY OF COLLISIONALLY AIDED RADIATIVE.., 1407

these four channels are

D= III);;IHD} ‘
stepwise
Dzl i

D55 [mm)

}direct ,
D7

where the times below the arrows correspond to
the crossing times shown in Fig, 2(b) and indicate
when each transition takes place, Each of these
four channels contributes to the |I)- llll) transi-
tion amplitude, and interference between them
can exhibit interesting phenomena, In a recent
article,” we have demonstrated that this interfer-
ence effect gives rise to an oscillatory structure
in the total excitation cross section as a function
of the active-atom-perturber relative speed when
the crossings are well separated and the inter-
atomic potentials are such that the “stepwise”
and “direct” processes have comparable contri-
butions to the trausition amplitude. This effect
is similar to that discussed by Rosenthal and
Foley™® regarding He-He ' charge-exchange -
elastic collision in which the atom-ion interatomic
potential curves are similar to those of CARE in
the dressed-atom diabatic representation dis-
cussed here, In this paper, we provide a detailed
calculation vo supplement the discussion in Ref. 7.
This interference phenomena is quite general and
should be expected to occur m many systems
where excitation is possible ria several chamels,
The interference efiect discussed above requires
a special crossing configuration, i.e., three well-
separated crossings occurrmg at B, R}, and R,
Since the existence of crossings and their pusi-
tions and slopes depend on the interatomic poten-
tial as well as the detunings, other crossing con-
figurations may occur leading tc different mani-
festations of the interference effect in the total
excitation cross section, In this paper, atreat-
ment for the general case is given, and results
for special cases follow,

We note that the interference between the step-
wise and the direct processes occurs even in the

case of small detunings. However, the interfer-
ence does not give rise to interesting effects such
as the oscillatory total excitation cross sections
discussed above for the case of large detunings be-
cause, n the case of small detunings, the transi-
tions du not occur at well-defined instants, which
is required to obtamn & defumte pnuse relationship
between amphtudes arising from the stepwise and
the direct processes.
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V. THE HAMILTONIAN AND THE EQUATIONS OF
MOTION

The equations of motion to be derived in this
section do not differ for quantized or classical
fields, To be more in line with the discussion
in the dressed-atom picture given earlier, we
take the fields to be quantized and use the photon-
number representation; however, the calculation
is carried out in the bare-atom picture, Let us
consider a system consisting of a three-level
active atom interacting with two external fields
and a perturber atom. The Hamiltonian of this
system can be written as

H=H,+Hy +H,p +U(t), (5.1)

where the follov:ing hold. (i) The free-atom Ham-
iltonian H, hac three eigenstates {1), 12), [3) with
eigenenergies £,, E,, and £,; E, - E,=8w,, and
Ey~E,=Hwy,, (i) Hy =Rwaja, +hw'a,.a,. is the
quantized free-field Hamiltonian describing a
two-mode external field with photon energies fiw
and Aw’', where a, a;,, and a,,a,’ are the usual

Vi) =@ =1,0 =1lu®|3,n=1,n" =1)

creation and annihilation operators of the photons
for each mode. (iii) The active-atom-field in-
teraction is given in the rotating-wave approxima-
tions by

Hmﬁgw(awR;z + ac.:Rlz)

+hE (@ Ry +aiRy) (5.2)
where R;, R, and R,,,R,, are the raising and
lowering operators of the active-atomic states,
the indices referring to the transition involved,
and £, and £+ are the coupling constants related
to the interaction strengths introduced in Sec, [
by x=n'/2¢ and x'=n"/?_. with n,n’ the photon
numbers, (iv) The effective interaction with the
perturber U(/) is taken to be time dependent, since
the internuclear motion is not quantized, and is
diagonal in the basis of |1,n,n'), 12,n-2,n"), and
13, -1,n' = 1) (eigenstates of H , +Hp),

V0= ,n,0 U@, 0,07,
V. =@n-1,0lU®)2,n-1,1"),

{t,yn,n' 'U(f)lz,n -1,n"=Q@,n- l,n'|U(I)|3,n- 1L, -=8,n=-1n'-1 |U(t)|1,n,n')=0 ,

owing to the absence of inelastic collisions.
The wave function of the system

l\y(t»____ Clu) e-i(E“nhu'n'hw'M/h

+C,(1) PRl PR RIS I (T
+ Ca(t)e" [E3+ (=1 + (' =1 00 Je /A
satisfies the time-dependent Schrodinger equation
i -2 1w =Hlww),
from which the equation of motion for the probabil-
ity amplitudes C,(t), C,(t), «nd C,(¢) are obtained,
iC, =C,V,(1) + xC,0'%¢ ,
iC,=XC,e 8t + C,V (1) + X'Cyet™t,
iCy=X'Coe™d + CV,(0).
With the substitution

- ¢
C,=C,exp(—if V,(t')dt’) ,

(5.4)

- t
Cz=Czexp(-i f V')t '),
and

- t
C,=C, exp(~if Vs(l')dt’) )

(5.3)
(
the equations become
: - t
iC,=xC,exp [i (At - f V(t'dt ')] ,
K . ¢
iC,=xC,exp [—z‘(Al —f V"t ')]
. ¢ )
+x'C exp [i(A't -f vV (thdt )] , (5.5)

2 - t
iCa=x'C2exp[-i(A't- f V(') ')],

where V(1) =V, () = V,(t) and V()= V() = V,(8)
are the relative energy shifts of the active-atomic
levels during a collision. All the relaxation rates
are neglected in this equation owing to the con-
dition of large detunings in Eqs. (2.1)-(2.4),

Equations (5. 5) will be solved using the pertur-
bation theory with the initial conditions C,(¢= —«)
=1, C,(t=-=)=0, and C,(t=-=)=0 correspond-
ing to a three-level atom initially prepared in
state 1. The probability of exciting the atom to
state 3 is given by |Ca(t=°°) |2, and the correspon-
ding total cross section is obtained by integrating
over the impact parameter b,

a=fo |C,(t=w)|22nbdb . (5.6)
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V1. SOLUTIONS AND RESULTS

In the perturbation limit, Eqs. (5.5) are easily solved to obtain a formal expression for C,(¢ =),

Colt=w)=~ f: x'(t)exp[-i(A'z-f :V'(t')dt')] f.: x(t,)exp[i(At,- jo' " v(t’)dt’)]dt,dt, (6.1)

where an overall phase factor has been suppressed since it does not change the probability Iéa(t =) F
Equation (6,1) has to be evaluated using different techniques in different regions of detunings correspond-
ing to different physical situations. We follow the classification of Table I.

A. Cases A, B,C

In this group, A is in the I region, We integrate by parts the ¢, integral in Eq, (6.1), neglecting the term
containing dx/dt owing to the conditions (2.1)-(2.4), and obtain

Cylt =)= —,13-{ j: x()x ') exp[-i((A +a) - fo ' (v + V’(t')]dt')]dt

-i f : X' (¢) exp [—z‘(A’t - f0 ' v'(:')w')] f_: X(t)V(t,) exp [—i(At, - fo v )dz’)]d:,(u} . (6.2)

Since x(¢) is a constant X, over the range of V(¢), and |A|Tc «1, we can take x(/,) out of the ¢, integral in
the second term of Eq. (6,2) and set e*41>1, One finds

é,(::«o):il—A{ E((t)x'(t)exp[-i((A+ A"~ fo ‘[V(l')+ v’ (t')]dt')] dt
- xo[:x'(t)exp[-i(s’t - j;‘[V(t Vv (t')]dt')]dt

+Xo f : x'(t)exp[-i(A't - fo ' V'(t')dl')]dt} . (6.3)

Un to this point, we haveused the assumptions that the field, E{t), is a slow pulse and that & is in the J
region, which are common to all three cases A, B, and C, Further evaluation of Eq. (6.3) involves the
other field, E'(¢), and the other detunings, 4’ and &+ 4/,

1. Case A

In this case, all the detunings are in the ! region,
We use the same technique used to obtain Eq, (6.3)
from Eq, (6.2) to evaluate the integrals in Eq,
(6.3). Namely, we integrate by parts once on
each of these integrals, neglect the terms contain-
ing the derivatives of x(¢) and x’(¢), replace e™**¢,
e™®*, and e7'*"4"" by 1, and set ¥'(!)= X, to ob-
tain the excitation amplitude

- l-e“' 1--e'“"°"
Cg(’=°°)="xcx:)( an AI(A+AI)),

where 6= JV(¢')dt’ and 6' = [, V'(')d¥' are the
usual impact phases associated with pressure
broadening theories.'® The amplitude depends on
the collision impact parameter b, implicitly
through V{¢) and V' ().

The excitation probability is obtained by squar-
ing Eq. (6.4):

(6.4)

- 2(1 -cos8) . 2(1 -cosd’)
o) 2. v2y2
|Cyte==)*=xx (AA'z(A+ 2t ®aa+a)

2(1 - cos6”) ) ,

YT Y YL

(t: _5)

r
with 8" =6 +6’. Equation (6.5) exhibits some in-
teresting features. The first term dominates
when |a’| < |a], [a+ 4’|, and only the impact
phase associated with the 1-2 transition 6 appears,
This suggests that the collisionally enhanced ex-
citation to state 3 is determined by the collision
rate associated with the 1-2 transition only., When
lal «]a’|, la+ 4’|, the second term dominates,
and the only relevant collision rate is that as-
sociated with the 2-3 transition, From the point
of view of CARE, these two terms can be regard-
ed as “stepwise,” since no collision rate ussociat-
ed with 1-3 transition is involved, When |a + 4’|
« |A| , |A' l , however, the third term dominates,
indicating that the “direct” process 1s responsible
for the excitation. When |a], [&'] and |a+ 4’|
are comparable, contributions from both the “di-
rect” and the “stepwise” processes interfere with
each other,

The excitation cross section is obtained by in-
tegrating Eq. (6.5) over the impact parameter
[i.e., Eq. (5.6)]:

3! (A B _C )
o= zr(a”fz's(‘&'*a i evy R (6.6)
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where
A=fo.(1—cose)bdb,
B=[(1-coso’)bdb,
C= j; (coss” ~1)bdb.

This result does not specify the type of iuteratom-
ic potential, For a given potential, A, B, and C
can be calculated analytically or numerically, For
van der Waals potentials with the straight-line-
trajectory approximation

V() =Cypu/[R}
and
V'(t) = G;Dw/[n(t)]s

with R(#) = (b% +v3*)!/?, analytic results can be
obtained,

4nx2x'2 37 2/8 . N
0= mff—&r; -87) (~I'(~%) cosén)

+

x(|cvm}|2/5 lC;le'z/s-lcgnw‘z/s
a A a+a’ )

6.7

with
~T(-#)cos(im=3,

whare v {8 the active-atom-perturber relative
speed and Cypy = Cypw + Cypy-

2. Case B

Since &’ and &+ 4’ .r¢ in the Q rogion, the in-
tegrals appearing in Eq. (6.3) can be evaluated
by the stationary-phase method.** The first term
and the second term in Eq, (6.3) cancel each other
approximately because of the condition IAIT‘,
« 1, The third term yields

Cylt =)= (~ixxs/ANn/a') /22 cos(¢’ + im),
(6.8)

where

vt @)
2 i\at /,

and 7, is the stationary-phase point defined to be
the positive solution of V' (¢') = &',

In obtaining Eq. (6.8), we have assumed that the
impact parameter b is small enough such that the
crossings are induced during a collision (i.e., we
neglect collisions with large impact parameter
which do not contribute significantly to the total
cross section since no crossing is induced), and

, ¢ =-a'T 4+ f'° v'@har

0

22

that £=0 is the time of closest approach between
the active atom and the perturber.

Apart from the factor x,/4, Eq. (6.8) takes the
form of the two-level result,!? and a standard
treatment for obtaining the total excitation cross
section can be used. The excitation probability
is obtained by taking the square of Eq, (6,8)

1€yt =0} |2 = (x2x12/ 8%)(a/ ' YA cos?(¢' + in), (6.9)

from which the total excitation cross section is
caiculated using

RY .
o=_[ * 16t ==)|22mb 0 . (6.10)
[\

The upper limit in this integral has been changed
to Ry, the internuclear distance at which the in-
stantaneous resonance for the 2-3 transition oc-
curs, since for collision impact parameter larger
than Ry, the excitation ic negligibly small due to
lack of crossings and Eq, (6, 9) fails to be valid,
Equation (6.9) diverges as the impact parameter
approaches Rg; however, Eq. (6,10) remains fi-
nite since o' varies as (b% - R;?)'/%, The cutoff
at R, may lead to an error of up to 15%, depending
on the detuning, Better results can be achieved
by numerical calculations for impact parameters
near b Ry, or by a uniform approximation'® spec-
ially designed to overcome the difficulty of diver-
gence,

For van der Waals potentials, Rj=(Cypy/A"/8,
and Eq. (6.10) leads to the total excitation cross

section

L Y P ST R
o= e (6.11)
where cos?(¢’ + {n) has been approximated by 3,
and v is the active-atom-perturber relative speed.
This result shows that the line shape varies as
A% (since 4 is in the I region) and varies as
|a’1-272 ) reflecting the fact that &' is in the @

region,*?

3. Case C

In this case, 4" and 4+ 4’ are both in the A re-
gion, No crossing occurs for the 2-3 transition
and the 1-3 two-photon transition at any collision
impact parameter. Since 4 is in the / region
(lal7,«1), the first two terms in Eq. (6.3) ap-
proximately cancel each other as in case B, lead-
ing to the excitation amplitude

és(t=oo)=;gn

X L i x'(l)exp[—i(A't- j; 'V’(t’)dt')]dt.

(6.12)

PPN

Sardtons




S R S T N S S T SR NNy SR O et g ol i

This equation is easily recognized as simply a
two-level excitation amplitude (2-3 transition)
multiplied by a factor x,/8., Results for the two-
level excitation probability are available from the
numerical study of Yeh and Berman® for van der
Waals potentials and Lennard-Jones—type poten-
tials, Also available are approximate analytic
results of Tvorogov and Fomin and Szudy and
Baylis' using saddle-point methods.!’ We now
give only the essential features of the results,
For details, the readers are referred to Refs, 2,
14, and 15,
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The cross section, obtained by integrating
|é,(t=°<=)|2 over the impact parameter b, shows
a A7 dependence as is clear from Eq. (6,12).
The dependence on A’ follows the antistatic wing
behavior, For a van der Waals potential, Fig, 6
of Yeh and Berman’ exhibits a line shape going as

|a’j 172 exp(-pla’[s9)
with B a constant, which is in agreement with

asymptotic results'® s to within a multiplicative
factor of order 1,

B. Cases D, E

In these cases, &’ is in the I region, while & and & + A’ are in the @ region (case D) or A region (case
E). Since 4’ is in the  region, the integration-by-parts technique used in cases A, B, and C can be ap-

plied to the ¢ integral in Eq, (6.1) for its evaluation.

We write Eq, (6,1) in the following form: .

Clt=)=- f_: x'(l)exp[—i(A't - j; ' V'(t')d/)]G(l)dt , (6,13)

where

Git)= _[: x(t,) exp[-i(At, - j; " V(t')dt')] dt, .

(6.14)

An integration by parts is performed on Eq, (6.13), neglecting the term containing dx’, 4¢, setting x' (1)
=X, over the range of V' (¢), and setting e™ "¢~ 1 to obtain

Cylt= w)=;‘:¥3-{e‘°' f : x(t)exp[-i(Al - j; ' 140 )dl')] dt

-
-

x(0) exp[-i(At - j; wer+ v (l')]dt’)] dt

+ [: x(t)exp[—i((MA')t- fo ‘[V(I')+V'(t')]dt')]d1}. (6.15)

The second and the third terms approximately
cancel each other because of the condition |4’ T,
<«1, and we get

o
Cylt==)= -Kl;&ﬂ-e“"

x f: x(t)exp[—i(At— fo ' V(t')dl')]dt,

(6.16)

where 6’ = [ 2, v'(')dt’ is the impact phase® as-
sociated with the 2-3 transition,

Equation (6.16) is simply the 1-2 two-level tran-
sition amplitude multiplied by the factor (x3/a")e*? .
Its evaluation depends on the region of 4,

For case D (A in @ region) a stationary phase
method!! is used, and for case E (4 in the A re-
gion) a method of steepest descent!® or a nume=-
ical calculation® can be carried out,

{
1. Case D

The integral in Eq. (6.16) is evaluated using a
stationary-phase method to yield

Gyt =) = (=ixXy/a") e (n/a) /22 cos(ep + 4n),
(6,17)
where

a-.‘.l(ﬂ)
=2 IVar /.,

To ! ?
¢=-A1‘o+f viat,
4]

and 7, is the stationary-phase point of the inte-
grand in Eq. (6,16), i.e., the solution of the equa-
tion A=V(¢). T, is taken to be positive, and we
have taken {=0 to be the time of closest approach
so that 7, are both stationary-phase points,
Equation (6. 17) holds only for collision impact
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parameter small enough such that potential curve
crossings (in the dressed-atum picture) are in-
duced during a collision, In the straight-line-
path approximation, this amounts to restricting
the impact parameter to values smaller than R,
the internuclear distance at which the resonance
between the 1-2 transition and the field E occurs.
For b R,, Eq, (6,17) is not valid, and the con-
tribution to the total excitation cross section is
negligible due to lack of induced resonance,

The excitation probability is given by

[C,(t=)]2= (x2x(2/ &) (n/ a)4 cos®(¢ + 4n). (6.18)

To obtain the total excitation cross section, Eq.
(6,18) is integrated over the impact parameter
from 6=0 to b= R, according to the discussion
leading to Eq. (6.10), For a van der Waals poten-
tial Ry=(Cypy/4)!/?, an analytic result can be ob-
tained provided that cos®(¢ + ir) {s approximated
by its average value %, which is a good approxima-
tion since cos®(¢ + {n) is rapidly oscillating as a
function of H, We get

Ro .
o=f 16 =) 220 b
0

_ 4n2yey? Gy 172 (6.19)
- 3A’%U 'A'*7§ . .

The 4™ and |4]™/2 dependences in this equation

are expected because &' is in the I region and &

is in tho @ region,

2 Case

Since 4 Is in the A region, Eq. (6, 16) has to be

evaluated using saddle~point methods or numeri-
]

63(t=°°)=713-j:x(l)x'(l)exp[-i((A+ A’)t-];‘

Since A+ 4’ is in the I region, Eq. (6.20) can
be evaluated easily by integrating by parts once,
neglecting terms containing d(xx’)/d¢, setting
et *a% 51 and evaluating x(0)X'(f) &5 XoX,. One

obtains
Cilt=o)=[xxy/ a(d+a)(1=e®"),  (6,21)

where
o'=o+a'=f W + v e

In this approximation, the region of A(@ or A)
does not pla an important role, because the zon-

tribution to the total excitation cross section comes

mainly from collision with impact parameters

near the Weisskopf radius associated with the 1-3
direct transition. At such (large) impact param-
eters, no instantaneous resonance can be induced

cal methods, We do not have to reiterate the dis-
cussion given in case C, Let us just state the
results for van der Waals potentials: Both the
numerical method and the saddle-point method
give a total excitation cross section going as

A'*zlAl-ﬂ/Sexp(_BlAIS/G) ,

with a difference of a multiplicative factor of order
10

C. CasesF, G

In these cases, A and &' are large (|AI1'c »>1,
|a'{7,5>1) and A+ 4’ is in the I region, This can
accur when A and &' are of opposite signs and dif-
fer by at most 1/7, in magnitude, According to
the discussions in Sec, IV, the direct excitation
process is expected to be dominant. Since A+ 4’
is in the / region, large contributions to the total
excitation cross section come from collisions with
impact parameters near the Weisskopf radius'’
agsociated with the 1-3 interatomic potential,
Near such impact parameters, V(t)/4<«1, so that
approximations can be made to neglect terms con-
taining such a factor in evaluating Eq, (6,1),
When an integration by parts is performed on the
1, integral in Eq, (6.1), such as the one leading
to Eq. (6.2), a factor of V{(t)/A i3 produced in the
second term of Eq, (6.2) and is subsequently ne-
glected, Further integrations by parts produce
additional factors of V(1)/A, Hence, to a good
approximation, the 1-3 excitation amplitude can
be writtrn as

v+ v (t')]dt')]dl . (6.20)

gxring a collision, even in the @ region, This
suggests that when & + &' is in the  region and
a,4&' are large (|a[7, »1, [a'[7,>1), the direct
excitation process dominates, and the collision-
induced potential curve crossings for the 1-2 and
2-3 transitions, which occur at much smaller
internuclear distances than the Weisskopf radius,
have only higher-order effects on the excitation
cross section, Consequently, cases F and G are
equivalent in this approximation,

The excitation probability is given by

|G, =) |2 =[x/ a%(8 + &')?]2(1 - cos”), (6.22)

and the total excitation cross sectioa by
o={4nxdx2/ A% A+ A’)zlj (1 -cos8’)odb. (6.23)
[\]

For a van der Waals potential, the total excita-
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tion cross section is given by

4nxix? (3nIQ",Dw|)2’5/-I‘(—-§)cos%n
\ ’

I=R@+aAE\ 8 5

(6.24)

where Cypw=Cypw + Cypy is the van der Waals
constant for the 1-3 relative potential, and
-I'(-%)cossn =3,

The line shape varying as A72(A+A')* ig typical
of the impact region when the direct excitation pro-
cess is dominant over the stepwise process, The
line exhibits a 4 rather than exponential A de-
pendence, even though 4 is in the A region; in
some sense, the direct excitation serves to break
the adiabatic following of the field x(¢) on the 1-2
transition and changes the dependence from e:-
ponential to power law,

D. CasesH, 1

In these two cases, & and &' are large (|a[r,
»1, lo ch > 1) and of opposite signs, and their
sum (& +4’) is still in the @ region, We further
focus our attention to the region of |4 + &' |« ]al ,
IA'I. This region is of particular interest be-
cause the direct two-photon excitation process is
dominant over the stepwise process and, by vary-

ing IA+ a' l, the effects of stepwise process on
)

the direct two-photon line shape can be deter-
mined, Moreover, this further restriction of
detunings makes the mathematical treatment to
be given below much simplified and equally ap-
plicable to both case H and case I,

If the condition |a&+4a"] <« |a],|a’] holds, the
instantaneous resonance for the direct (1 ~ 3)
transition occurs at an internuclear distance (R])
much larger than that for the 1-2 transition (R,)
or the 2-3 transition (Ry) (i.e., Ry > R, Ry).
Thus, in the straight-line-path approximation,
for collisions with impact parameter b such that
Ry> b> Ry, Ry, only the 1-3 instantaneous.reson-
ances occur during a collision, Collisions within
this range of impact parameters give a major
contribution to the total excitation cross section
because of the condition Ry » R,, R}, the weighting
factor bdb in the definition of the total cross sec-
tion [Eq. (5.6)], and the fact that coilisions with
impact parameters b larger than Ry do not con-
tribute, due to lack of collision-induced reson-
ance, Hence, we can do repeated integrations by
parts on the {, integral in Ey. (6,1), each inte-
gration by parts producing a factor vy al «
for the range of impact parameters of importance
determined by the (& + 4’) crossing, The excita-
tion amplitude is thus given, keeping only terms
up to first order in V'(1)/a. by

éa(l=°°)=:Ai{ f_: x(l)x'(t)exp[—i((A+ A - fo ‘ (vir)+ v'(z')]m’)] dt

- ¢
+ j x(OY (O[v )/ 4] exp[-i((A + 4" - f (v +v'( )}u’)]m} . (6.25)
-0 0
Since & +4’is in the @ region, Eq. (6.25) is evaluated using the stationary-phase method to obtain
C,(t==)=(=ixxy/ A)a/a" )} /32 cos(¢” + im)[1 + V(15)/4], (6.26)

where

au__l_l(d(V+V')) l
T2 dt ' ’

¢ = -(A+ A')r;'+f ‘v + v,

with 75 > 0 satisfying A+ &'=V(rg)+ V'(7)). As
befere, we have taken ¢=0 to be the time of clos-
est approach between the active atom and the per-
turber,

The first term in Eq. (6.26) represents the di-
rect two-photon process since it contains only
quantities relevant to the 1-3 transition a” and
¢". The second term represents the correction
due to stepwise process, which affects the line
shape somewhat, and may become important when
la+a’| is increased, as will be shown below.

The excitation probability is given by

L {
[yt =) |2 = @nx2x(2/ A%") cos*(¢” + in)

x[1+2V(7)) 4], (6.27)

The excitation cross section is obtained as usual
by integrating over the impact parameter, cutting
off the integral at b= R, , and approximating
cos®(¢” + im) by its average value :, For van

der Waals potentials, we obtain

CLir o e
3a% {a+a'i?

x [1+2(£¥M-) (%ﬁ’—)], (6.28)

CVDW

where ¢ is the active-atom-perturber relative
speed and Cypy and Cypy are the van der Waals
constants corresponding to the 1-2 and 1-3 rela-
tive interatomic potentials, respectively,

This equation has been obtamed & recent
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paper by Nayfeh® using a Landau-Zener-type ap- i L L ND' LR D B I I
proximation and discussed in connection with the i0 N A B
collision-induced three-photon ionization in which A A N

two photons are used to excite the atom, via ny 8

CARE, to a bound excited state. A third photon 10 € 7

then ionizes the atom. The present discussion
makes clear the conditions under which Eq, (6,28)
is valid,

The correction term in Eq. (6,28) shows the ef-
fect of the stepwise process on the direct two-
photon process, It falls off as IA +a' |“/ 2 for
fixed A, which is slower then the main part going
as |a+4’]972, 1t is thus easier to observe such
an effect at a larger [a+af I', however, the cor-
rection term cannot become larger than the main
part, since the treatment presented here ceases
to be valid.

Digression. Before we go on to present the next
case, it is advisable to show a spectrum so that
we can have a better overall view of all the cases
presented so far. In Fig, 3, the total excitation
cross section is shown as a function of &' for a
fixed &= -1,5% 10" sec™ and an attractive van der
Waals potential with constants Cypy=-1.2x10"®
Rsec?, Gpy=-1.5X10% A®sec™, In showing
such a “complete” spectrum, we cannot avold re-
gions where none of the approximations employed
incases A throughlis good (i.e., regions with de-
tunings|~1/7.). Hence, the line shape from nu-
merical integrations of Eqs, 15.5) and Eq, (5,6)
is also shown for comparison and to aid in gaining
an appreciation of regions of each case, Since
there are many curves on Fig. 3, and each curve
only has a limited region of validity (for some

S
]
n
{

18
o
¥

EXCITATION CROSS SECTION (A%)

S

-
L o
.
>
.
O

i |

[
0

& (10%sec’)
FIG, 3, Excitation cross sections versus A’ for a

fixed A=~1.5x 10" sec! and an attractive van der Waals

potential of constants Cypy=~ 1,2 x 108 A¥gec™!, Cipw

==1,5% 10" X¥sec”, and v =10° omsec*!, x,=x4= 1‘;3

sec™, Curve N is the result of numerical integrations of

Eqs. (5.5) and (5.6); others are plotted according to the

equations in Table II, Only the regions, where at least .

the signs of the detunings are correct, are shown, Sce

the text for discussion,

—-—ren
-

cases the regions do not fall within this figure),
the following points will help in reading this
g: aph:

{1) Curves A, B, C, D, E, F, and H, represent-
ing cases covered so far, are plotted according
to equations shown in Table II, and curve N is
from numerical integrations of Eqs. (5.5) and Eq.
(5.6). For curves B, C, D, E, and F, only the

TABLE 1l Lino shapes.
Case Excitation cross section
amda 30\ (-0-%)costn ) (leypyl | Icipet’s _ ey l’“)
A 3ARAY \ @ 5 A ' A T K+'K’ t

/2

4,‘2 2,12 I Y
B 3ngzx IA'%I

2,1275/2 e - /6 11a015/8
¢ A (G |13 1/ %1 X ool el

42y, jo mmllz
b At 1]

xdxg2ns? oy IV31A1! /3,~1.%0 Cypwi Vo af8/8

~ A
E 0.9504877

. 4nxdxi? 3a{Clpw] )z/s (-I‘(-j) cost 'n)
FG Al +A) ( 8 5

412 2402 Cohnw 1/2
H,1 ——azxﬁn— 1& +&'] s{1+2

&)
' “. A

3 The exponential line shape from the two-level asymptotic calculation of Tvorogov and

Fomin (Ref. 14) is adopted.
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portions, where at least the signs of detunings are
correct, are shown,

(2) The conditions in the fourth column of Table
I should be kept in mind in reading this figure.

(3) The detuning, &=-~1,5x%10" sec™ ( A|7c~1),
is in neither the impact region nor the quasistatic
region. Hence, only in the cases when 4 is un-
important, does the agreement with the numerical
result become good, e.g., cases A, F, and G
near |a+4’ l'rc«l,

(4) Curve B has the tendency of having the same
A" dependence with the numerical result, if we
extend the value of &’ well into ¢ region. The
numerical difference comes from the 4 varia-
tion in case B, which is not a very good approxi-
mation for A= -1,5x10" gec™, The same state-
ment holds for case C if we extend the value of
4’ well into the A region of &+ &',

(5) Curve E does not have any region of validity
in this figure because of the sign and size of 4,
We show it for comparison.

E, CaseJ

We return now to case J, which is perhaps the
most Interesting case, since all the detunings are
in the @ region and the curve crossings can inter-
fere with each other, leading to a new type of in-
terference effect, For the convenience of presen-
tation, we give some of the details of the calcula-
tion in the Appendices and separate the discussions
to calculations on (1) the amplitude and (2) the
cross section, Since the detunings involved are
large (typically of the order of 10** sec™) in this
case, a large amount of energy per collision
(~107 eV) is transferred from the atomic motion
to the internal degrees of freedom. Some con-
sideration of the energetics seems to be advisable
to ensure the validity of the calculations below,

For such large kinetic energies, a temperature
higher than the room temperature (2100°C) is
required, which in turn reduces the atomic col-
lision time (7, 1/v). This, however, will not
violate the condition for the @ region ( |detunings|7, >
1) in general, since one can keep this condition
with a thermal energy (<v® > Fi|detunings|, To be

- -, ¢ - Y
A3=2(ﬂ/a' )uze § (o~9’ tsr/a-s1

1 dV)| P 1
*= (dt ST

2
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more specific, an estimate of the relevant quan-
tities (7] A1, E permar» > 1817,) is given. For the
largest detuning considered in case J (A=-8
%10 sec™?) and an atomic mass of forty times
proton mass, fija] =5 31 x10? eV, T=410K,
v=5,04 x10* cm/sec, 7,=9.85x10™® sec, and

Al'rca 79>>1, Hence, at a temperature higher
than 137°C, the kinetic energy will be large enough
to overcome the energy mismatch (i |a]) white
simultaneously maintaining the condition of the
@ region (|a]7,»1),

1. The amplitude

In this case, the instantzneous resonances for
1-2, 2-3, and 1-3 two-photon transitions occur
at internuclear distances R,, R, and Ry, re-
spectively, raring a <ollision if the impact pa-
rameter is such that the distance of closest ap-
proach beiween the active atom and the perturber
is smalles than the smallest of 2!, Rg, or Rg.

At such impact parameters, radiative excitation

is enhanced owing to the collision-induced instan-
taneous resonances, At larger impact parameters,
some of the instantaneous resonances c¢annot be
induced, giving rise to a negligible contribution
(compared with contributions from collisions with
smaller b) to the total cross section, Therefore,
in the straight-line-path approximation, it is suf-
ficient to consider collisions with impact param-
eterb<R,, R,, or Ry.

The instantaneous resonance points in the time
domain correspond to the atationary-phase points
of the integrals appearing in Eq. (6.1) and, owing
to the conditions |al7,»1, |a'|7,>1, and |&

+ A'| 7.>>1, major contributions to these integrals
are from the neighborhood of these points, Hence,
a stationary-phase method, of which the details
are shown in Appendix A, is used to evaluate Eq.
(6.1).

Assuming that the time of instantaneous reson-
ances are all far from {=0, where the collision
is centered, the amplitude is given by

. U U ietgz®
A‘= (ﬂ/al)llze-t(o*o +31/4 +sT /4)[1 -5 ._,2-,("2 s's,(ff +gf )1/2 els €, t7/4) -is .z,/z]
e Y s . oM wctgz2
-iv2 ssz(n/a”)"z(f:‘;-*gﬁ)”ze“"’ 1o ts !/4)[1 + l\fis' (f§+[,'22)llze's Gats/4) s 'Zz/zj ,

' 0 . 1en®
A2= ("/al)xlzei(ooo +51/4 “'/“[1 +5| - i‘/‘islsl(ff +gzl»)1/ze-is @7 /4) +is '21/2]

Cylt=o)==3xxs (@/al¥A, +A,+4,], (6.29)
where
]
(6.30)
- iﬁssz(n/a”)‘/z(fﬁ ,*_g(z))l/ze-tsoovi (ou.s"v/a)ll _ i\fis' (f§ +g§)”2€'““ Gyrv/a) ous"rzglz] , (6. 31)
(6.32)
{6,33)

vk A D
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where
dv , dv’ , d(v+V')
s =8gn (——) § =sgn (——-) s = sgn(———————) 6.34
dt/ ) a/,s at /g’ (6.54)
Yo ' Al % ' ” "ow ' ’
¢=-An+£ vidt, ¢ - 0+£ vitdt, ¢ =-(a+4a")7g+ 0[V(t)+V(t)1dz, (6.35)
8, =tan™(g,/f}); (6.36)
81,f, are the auxiliary functions of Frusnel integrals evaluated at z|,
zo= |@afm) 3l =), 2= @' /e 2w~ 7|, 2= Ra'Y M o(xl - 1), (6.37)

s,=sgn(To=T,), s,-=sgn(7h - 7,), (6,38)
and 7, T, T, are the positive solutions of
A=V, &'=V'(), a+A =v(O)+V'(),
(6.39)

respectively, If any of the times of ir stuntaneovs
resonances is near /=0 {i,e., 7,%0. 7>0, ¢
75 = 0), the corresponding time derivative of the

ahove. There are two cases (a and b) of special
interest in which Eqs. (6,28)~(6.39) can be very
much simplified,

a. Exaclly coinciding times of instanlaneons
resonance, To=To=Ty. All the times of instan-
taneous resonance coincide. In this case, z,=0,
fi~=& =, and 6, = {n so we obtain from Eys.
(5.29)--(6. 39),

A -.-(,,/“:)1/29-1(« O eqr/des /4 6.40
potential (@, o', or ") approaches 0, and Eg. ! Y ) s { ) .
(6.29) becomes singular and is a poor approxima- A= (/') Retter e ar/aer /iy (6.41)
tion to the amplitude, Apart from this, Eqs. A= 2(nfa’ ) 2erttesesar/aw 1 /i) (6.42)

(6.29)-(6. 39) provide good approximations for the
amplitude, regardless of the typz of potentials
and the ordering of 7,, T,, ani 7, , as long as the
conditions for this case (case J) hold, The essen-
tias difference between various types of potentials
in determining the transition amplitude lies in the
derivatives and their signs at the times of instan-
taneous resonance, which are given by «, o', and
a"and s, s’, and s”, The ordering of 7,, T,

and 7, determines the values of s, and s,. For
given interatomic potentials and detunings, these
parameters can be determined, and Eqs, (6,29)~
(6,39) are greatly simplified,

In Eq. (6,29), it is natural to interpret the
tevms containing o’ as the contribution coming
from the stepwise process and the terms contain-
ing o’ as that from the direct process, since o’
and a” are associated with resonances of 2-3 tran-
sition and 1-3 transition, respectively,

Equations 15.29)-(6.39) represent the general
form of the transition amplitude under the con-
ditions of case J. They have been compared with
the results of direct numerical integration of Eqgs,
(5. 5) using attractive van der Waals potentials of
constants Cypy=~1.2%10'® A%sec™?, Cypy=-1.5
x10'® A°sec™?, and several detunings of the order
of 10'® sec™, For impact parameters smaller than
the smallestof R, Ry, and Ry, Eqs. (6.29)-(6,39)
give very accurate results (see Fig. 4); for im-
pact parameters outside this region, which con-
tribute little to the total cross section, Eqs,
(6,29)-(6.39) are not applicable as discussed

The amplitude is given by Eqs. (6,407, (6.41),
(6,42), and (6.29), The contributions irom the

-]
1

P(b) (107)

E-3
i

Ly

4 5 &
b ()

FIG, 4. Comparison of P(b) vs b curves from the
analytic expression [Eqs. (6.29)-(¢.39)] and the numeti-
cal caleulation [integration of Eqs. (5.5)} for an attractiv.
van der Waals potential with xo=x§ 10" sec™!, A -4.0
x 10" sec™!, and A’ -5.05x 10% sec!, Other parame-
ters are the same as those in Fig. 3. The analytic ex~
pression, which is singular at §=5.57 l., was cut off at
b=5.40 A, where it begias to diverge. The agreement
at smaller impact parameters is near perfect,
numerical intcgration of Eqs. (5.5); -==-- analytic ea-
pression [Egs. (6.29)-(6.39)).
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direct process are absent, leaving a very simple
form involving only the stepwise contributions.

For siven interatomic potential and A, the con-
dition 7,=17,= 7, corresponds to a particular val-
ue of &’ (e.g., &"=(Cipy/Cypu)A, for van der
Waals potentials), Near this value of &', ac-
cording to Eqs, (6,41)~(8.42), one would expect
that the direct process would be less important
than the stepwise process, which should be re-
flected in the line shape. We find this result
when we numerically evaluate Eqs. (5,29)-(6,39)
to obtain the total cross section, as will be shown
later,

b, Well-separated times of instanlaneous reson-
ance. Inthis case, the arguments of f; and g, in
Eq. (8.36) become large, and since S, and g; are
rapldly decreasing functions with maximum values
£,(0)=g,(0)=1, we can, to a good approximation,
neglect terms containing factors V2 (f3+g3)'/2,
ag compared with 1 in Eqs, (6.30) and (6.31),

We obtain

Al = (n/a')‘ /2 e-ﬂ.#o'ﬂtl( u'v/ﬁ(l - sx)
_iﬁssz(n/a')xla(fg+gg)llaet30°‘l (e"+s"1/8) ,

(6.43)
Ay=(n/a' P/ ehre s /017901 4 )

- iV ssyla/ oA f 4 gE 3 gt T
(6.44)

The amplitude as given by Eqs. (6.43), (6.44),
{6.32)-(6.39), and (6,29) contains contributions
from the stepwise and the direct process that in-
terfere with each other.

1t is not difficult to understand the physical
meaning of each term in Eqs. (6,32), (6.43), and
(6.44) by tracing back the calculations leading to
them in Appendix A, Term A, [Eq, (6.43)] con-
tains the contributions from the instantaneous
resonance points before {=0; term A, [Eq. (6.44))
contains the contributions from the instantaneous
resonance points aiter {=0; and term A, [Eq.
(6.32)] contains the contribution from the step-
wise process in which 1-2 resonance occurs be-
fore t=0 and 2-3 resonance occurs after =0,
Terms 4, andA, contain both stepwise and direct con~

tributions. For agivenorderingof7,, 74, and 7§
some stepwise contributions will be absent, For
example, when 7,< 7, s, =1 and the first term in
Eq. (6.43) vanishes, indicating that no stepwise
process is occuring before /=0, since the 1-2
resonance happens at a later time than the 2-3
transition (-7,> ~7,), The first term in Eq,
(6.44) does not vanish because 7,< 7, and the
stepwise process can occur after /=0, The sit-
uation is reversed when 7,> 7, (s, =~1). How-
ever, A, always survives since the 1-2 transition

occurs before =0 and the 2-3 traneition sceurs
after 1=0. In any case, there are four terms; in
the amplitude corresponding to the four excitation
channels discussed in Sec. {V.

2. The total cross section

1t is straightforward to obtain the excitation
probability by taking the modulus of Eq, (6,29),
The resulting expressions are lengthy and are
given in Appendix B, Only for the two special
cases (T,=T7o="T, and T,, Ty, T, far apart) are the
analytic expressions given in this subsection,

To demonstrate the success of the stationary-
phase method used in Appendix A, we compare in
Fig, 4 two |éa(t=°°) [2vs b curves, one from nu-
merically integrating Eqs. (5.5), the other from
squaring Eq, (6,29) for an attractive van der
Waals potential with Cypy = -1,2 x10*® A®sec™?,
Ciow=~1.5x10' A%sec™, A=-4,0x 10”sec™, and
a'=-5,05x%10" sec!, The agreement is near
perfect except for b2 5,40 A, which is close to
Ry=(Cypy/8)/%=5,57 A, at which Eqs, (6,29)-
(6.39) become singular. The values of detunings
used are large (|al7,» 1, [a’ 7> 1); however,
for smaller values of detunings (~10'* sec™), good
agreement (to within 10%) is still obtained,

To obtain accurate cross sections, we have to
do numerical integrations of Eqs. (5.5) for im-
pact parameters b near and larger than the smal-
lest of R,, R;, and Ry and tc use Eqs. (6,29)-
(6.39) for smaller impact parameters. This pro-
cedure is used to obtain the total cross section
as a function of &’ in a range including the point
4" = (CYpy/Cypw)d at which all the times of in-
stantaneous resonance coincide, for the attractive
van der Waals potential used in Fig, 4, and for
Az -2,0%10" sec™, The results are shown in
Fig, 5 along with two curves, one with a (& + &')*/®
dependence, the other with a 4’7’2 dependence,
The calculated cross section lies between the two
curves, which are normalized to the same value
as the calculated one at &' = (Cypy/Cypy)d (==2.5
x10" gec™ in this case).

From the discussion earlier, the contributions
from the (1 ~3) direct process disappear at this
point, since To=Ty=75. The calculated line shape
shows no marked structure due to this “interfer-
ence” effect; the line profile is a smooth curve
exhibiting the influence of both the stepwise and
the direct processes, If the stepwise process is
the only contributing one, the line shape would
have followed the &'%/2 curve; if, on the other
hand, the direct process is the predominant one,
the line shape should go as (4 + &’)?/2, Since the
calculated curve on Fig. 5 tends to follow more
closely the &'*/2 curve, it suggests that at the
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vicinity of &' =(C},,4/Cypw)4, the stepwise pro-
cess is more important than the direct process,
as previously discussed.

Simple analytic results can be obtained for the

following two special cases (¢ and i7)

i. Exactly coinciding times of instantaneous
resonance, T,=To=T,. Using Eqs, (6,29), (6.40),
{6.41), and (6.42), we obtain

J

|G, (F =) 2= (1?x2x(2/ ad cos?(p + &' +sn/4+5"1/4)+1
+2cos{p+ ¢ +s1/4+s"n/4)cos(p - ¢’ +sn/4 ~s"n/4)]. (6.45)

Although this is a simple expression, it cannot be used to obtain an accurate value for the total cross sec-
tion for reasons to be discussed below. The time derivatives of the interatomic potentials o and o' can be
expressed in terms of the internuclear distance and the impact parameter,

(—%—)R [ , (6.46)

’ Y 2 L0 av’
o' = (v/2R )R "I")Hzl(_d_f'f)nal )

a=(v/2R)(RE - b?)/?

(6.41

When Ry= R; (as in this case), brth a and o' approach 0 as b approaches Ry(=R{), and Eq. (6.45) is singu-
v, varying as (R - 5%, An approximate formula for obtaining the total cross section, such as Eq,
(6.10), is not applicable since it leads to a logarithmic divergence. Therefore, for a certain range of
impact parameter b near R,, numerical integration of Eqs. (5.5) and of [ [C,(t=)|?22bdb are required
to obtain an accurate value for the total cross section, The result for a specific van der Waals potential
and a given & is ropresented by a point on the line-shape curve, such as the one in Fig, 5 [the point &'
= A(C'\bw"cvow)]'

ii, Well-separated times of fustantaneous resonance. The probability can be obtained from Egs. (6.43),
(6.44), (6.32)~(6,39), and (6.29). Since the amplitude contains contributions from both the stepwise
and the direct processes, there will be interference terms in the probability. The interference effect is
best illustrated using a specific order of instantaneous resonances (e.g., 7> 7, > 7,). For this ordes
(75> 15 > 7,), the excitation probability is obtained as

[Cylt=w)|*= (rxoxs) (P s+ Py + Prye)

{6.48)
with
Py=2(1 ~ssin2¢)/ aa’, (6.49)
Po=(f3+gd1 ~s"sin2(¢" - s8,))/ aa”, (6,50)
Pyp==s (—27‘({%%@-) Ploinlo+ ¢ - " +s 4 = 5" In/4 50,]
+sin[p+ ¢ +¢" + (s +5" +5")n/4 - 56,]
+sin[¢’ +¢" — ¢+ (s" +5" - s)n/4~s6,]
+sin(¢' - " ~d+ (s’ —s" /4 +56,]}, (6.51)

where all the quantities have been defined in Eqs. (6,29)-(6,39). Equations (6.48)-(6,51) clearly show the
contributions to the total cross section from the stepwise process, the direct process, and the interfer-
ence betwee. the two, This result has been obtained and discussed in a recent paper,” and we summarize
only the essential features,

All the sine functions in Eqs. (6, 48)~(6,51) oscillate rapidly as functions of impact parameter 6, except
the one varying as

sin[¢p+¢' ~ ¢" +(s+s' = s")n/4+56,]

(the first term in Pyyz), which is a slowly vavying function of b, On integrating over b to obtain the total

cross section, only this term surviv s to yield a term representing the interference of the stepwise and

the direct processes which oscillates as a function of inverse active-atom-perturber relative speed 1/v.
An approximation such as Eq. (6.10) is used to calculate the total cross section, yielding
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where A is the area enclosed by the three cros-
sings on the interatomic potential curves in a
dressed-atom picture, and

Po=(s+s' =s")n/4+s6,

is a constant phase,

Equation (6.52) is not restricted to any specific
type of potential, and the calculation of total ex-
citation cross section using it is remarkably
simple. For glven interatomic potential curves
and detunings, one can graphically obtain the
slopes at the crossing points and the area A en-
closed by them. Substitution of these values into
Eq. (6.52) yields 0, A comparison of this cross
gection with the corresponding one obtained from
computer solutions indicates that Eq. (6,52) is
accurate to within 15%,

The third term in Eq, (6,52), which represents
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FIG. 5. The total excitation cross section as a function
of A’ near A’ = (Cypw/CypwlA for a fixed A=-2,0x 108
sec™!, The Interatomic potential and other parameters
used are the same as those in Fig. 4. this calcu-
lation; ----—- A+ A3 - vmsme a3 2 The three
curves are normalized to the same value at A’ = A{Cypw/
Cvow

b2 [ d

the interference between the stepwise and the di-
rect processes, contains a sine function which will
oscillate as the relative speed v is varied, It is
clear from Eq. (6,52) that the area A determines
the oscillation frequency, while the slopes at the
crossing points determine the amplitudes of the
osciilations, For given interatomic potential
curves, these quantities (4 and slopes) can be
changed by varying the detunings, and hence the
frequency and the amplitude of the oscillation in
the total cross section,

The restriction to a specific ordering of the
crossing times (i.e., 7,>7, >7,) corresponds to
confining the detunings in certain regions depend-
ing on the given interatomic potential, For de-
tunings in different regions, the ordering will be
different, However, it would be just as easy to
obtain the excitation probability and the total cross
section from Eqs, (6.43), (6.44), (6,32)-(6,39),
and (6,29),

To illustrate this interference effect and to in-
vestigate the feasibility of its experimental ob-
servation, we use a specific potential, as shown
in Figs. 6(a) and 6(b), instead of van-der-Waals~
type potentials for detunings 4= -8,0 x10" gec™
and &’ = -3,0x10" sec™, The resulting total ex-
citation cross section as a function of inverse rel-
ative speed 1/v is shown in Fig, 7, with X, =X
=10" sec™, The curve rises as (1/v)* with equal-
ly spaced peaks when the speed is varied from
10°% to 4 x10° emsec™, In terms of the laser pow-
er, the excitation cross sections are of the order
of (10°1,7,) cm?, with I,,1; the peak power den-
sity in W/cm?®, Thus, the interference effect
should be observable with moderate laser power.
Although a specific potential [Figs. 6(a) and 6(b)]
is used to demonstrate this effect, we emphasize
that the oscillatory feature occurs regardless of
the form of the potential as long as three con-
ditions are satisfied, First, there must be three
crossings, as shown in Fig, 6(b). Second, the
area enclosed by the crossings must be large
enough to produce a phase change of order n when
the speed is varied in a convenient range. Third,
the stepwise and the direct excitation contribu-
tions must be comparable, The first condition is
required for there to be four excitation channels
interfering with each other, This condition allows
for a phase factor that is nearly independent of




&

SBRST

TR

T

Tod

e et 1

(b)

FIG, 6. Interatomic potential used to demonstrate the
interference effect discussed in case J, (a) Bare-state-
classical-field picture. (b) Dressed-atom picture., The
dressed-state energies Ey gy 1y are related to the bare~
state energles Ey, 3 by Eqs, (4.2). In (a), the level sep-
arations are not drawn to scale; in (), the energies
#lal and ]A] set the energy scale. A=-8.0% 10" sec™?,
A'=-3,0% 10" gec,

impact parameter b, The second and third con-
ditions determine the frequency and amplitude of
the oscillatory term,

VIi. DISCUSSION

CARE, as presented in the dressed-atom picture,
is similar to radiationless inelastic collisions.
However, there is an important difference between
the two. In the radiationless inelastic atomic col-
lision, the process, and hence the cross section,
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FIG. 7. Total excitation cross section as a function of
inverse relative speed 1/v for a potential shown in Fig.
8, with xo=x{=10" gec!, &=-8,0% 10! sec”!, and A’
=-3,0x10% gec™!, The curve rises as {1/)%. As the
speed varles from 10° to 4 x 10° cmsec™!, equally spaced
peaks are clearly seen. Inthe inset, the product of the
total cross section and v? as a function of 1/v is shown.

is determined by the interatomic potential of the
atom-atom system, which cannot be controlled
once the system is chosen, In CARE, on the other
hand, the corresponding interatomic potential (in
the dressed-atom picture) depends not only on the
atom-atom system, but also on the atom-field de-
tunings as well as the field intensities., In the
weak-field limit, one can vary the detunings to
change the level spacings of the dressed states
and the positions of, and the slopes at, the poten-
tial curve crossings (if any) which are the essen-
tial parameters determining the CARE cross sec-
tion, Hence, the interaction between the two col-
liding atoms can be probed in a controlled fashion
by using CARE, a great advantage over the ordin-
ary radiationless atomic collisions. The three-
level problem discussed in this paper provides

a good example of the relationship between CARE
and inelastic collisions, The oscillatory features
obtained in case J of the previnus section for the
total CARE cross cection as a function of active-
atom-perturber relative speed are of similar na-
ture to those obtained by Rosenthal and Foley®

for He-He ' charge-exchange inelastic collisions.
The He-He* atom-ion interatomic potential curves
are analogous to those of the three-level CARE

in the dressed-atom picture [Fig. 6(b)]. The fre-
quency and amplitude of oscillation in CARE can
be varied by changing the detunings and thus the
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potential -curve crossing properties (positions
and slopes); such a variation is not possible in
charge-exchange inelastic collisions. Although
escillation of this type continue to be discovered'®'®
for charge-exchange inelastic collisions in alkali-
ion-noble-gas systems such as Na'-Ne, K’-Ar,
Cs*-Ar, they are confined in systems with atom-
ion interatomic potentials bearing a resemblance
to Fig. 6(b), and thus have limited value in in-
vestigating the atom-atom or atom-ion interac-
tions. With CARE, the scope of such studies can
be extended,

In case J of the previous section, we mentioned
that the interference effect should be observable
with moderate laser powers, without referring to
any specific experimental setup, The experiment
can be perlormed using crossed atomic beams or
a beam interacting with a gas sample. The beam-
gas sample method works only if the active-atom-
perturber relative velocity is approximately equal
to the beam velocity, In cases when better detec-
tion efficiency is required, one can use a third
laser to ionize the active atom from the upper ex-
cited state (state 3) and thus detect the ions in-
stead of the fluorescence.

Finally, let us mention another type of oscil-
lation which can occur in a two-level system and
should be distinguished from the present one,

The modulation in the absorption coefficient as a
function of detuning for atoms in a collisional
environment was discussed by Mies,*® Carring-
ton et al.,** Shlyapnikov and Shmatov,”® and ob-
served by Scheps ef al,® and Bergeman and Liao,*
This has been attributed to the oscillatory struc-
ture of the vibrational wave function of the quasi-
molecule formed by the colliding atoms, Such
an effect does not involve interference of differ-
ent channels of excitation, and is due to oscilla-
tion in the transition matrix elements,

VIII. CONCLUSION

We have presented a theory of collisionally aided
radiative excitation for three-level systems in the
weak-fields limit, Attempts are made to cover
as many cases as possible and to be as general
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as possible, although results are given for some
specific potentials only, Because of the complex-
ity of a three-level system and the distinct phy-
sical features and mathematical treatments in
different limiting cases, we classified the prob-
lem into thirteen cases according to the sizes

and the signs of the detunings., These cases were
treated in detail, except the last three cases (K,
L, M) which give rise to exponentially small ex-
citation cross sections for which reliable analy-
tic approximations are lacking at the present time.

A dressed-atom picture was also given which
brought the CARE problem into complete parallel
with the problem of radiationless inelastic atomic
{or molecular) collisions, In this picture, the
collision-induced instantaneous resonances be-
tween the atomic transitions and the external
fields are transformed into interatomic potential
curve crossings, Such curve crossings enhance
the excitation, especially in the large detuning
cases, and interfere with each other, leading to
offects reflecting the crossing configurations.
Some special crossing configurations yield par-
ticularly interesting interference effects {e.g.,
the modulation of the total excitation cross sec-
tion discussed in case J), A quantitative examin-
ation indicates that experimental chservations of
such effects are feasibie,

The theory does not include the cases of strong
fields which are of increasing importance and in-
terest with the advent of high-power lasers, The
dressed-atom approach seems to be most suitable
for attacking such cases, and numerical calcula-~
tions may be inevitably needed, The established
numerical method used in two-level CARE prob-
lems and the analytic methods presented in this
paper can be combined to form useful tools in the
investigation of these cases.

ACKNOWLEDGMENTS

This work was supported by the U, S, ONR
through contract number N00014-77-C-0553, The
authors thank Professor E. J. Robinson for many
discussions during the course of the work,

APPENDIX A

In this appendix we give the details of calculations leadmng to Eqs, (6,29)-(6.39) from Eq, (6.1), As-
suming that the collision trajectories are symmetric about =0, the time of closest approach between the
active atom and the perturber, we break the ¢ integral of Eq, (6.1) into two parts, ¢>0 and ¢<0,

Cylt=»)=- f:x'(t)eXp[—i(A't - j; ' V'(t')dl')] Q) dt

- fo °>((t)exp[_i(a't- ]; v (t')dt’)]@(t)dt,

(A1)
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where

Qi) = f_: x{#;) exp [—i (Azl - j; " V(t')dt')] di,. '

Because of the condition !Al‘rc > 1, the contributions to @ are from the neighborhood of the crossing points
x7,, satisfying A=V(f) only. Thus, for the first term (restricted to ¢ <0), we expand the exponent of the
integrand in @ in Taylor series about ¢, =-T7,, and for the second term (restricted to /> 0), we break the .
Q integral into two parts, from -« to 0 and from 0 to ¢, and expand the exponent about {,= -7, and {;=T7, '
for each region, respectively. The factor x(t,) is evaluated at x(x7)=X,. The Taylor series is terminat-
ed at terms «(/, % 7,)°, and the integrals obtained are evaluated exactly to yield

o H e s

Q) =x,e @ i/ X1 +erf[a? 31 + ) et} for £<0 (A2)
and
QU= xpe™ "0 Sa/ )1 + erf(? 2r, e )]
+ X! OV M/ el Herf[ o 13t - Tde T = erf(~at Pryes )} for 1> 0 (A3)

where erf is the error function and ¢,s, @ are defined in Eqs. (6.29)-(6,.39), Putting Eqs. (A2) and (A3)
into Eq. (A1), using the relation erf(z)=1 - erf~(z), and combining terms, we can write Cy(f=<) as a sum
of four terms, Under the assumption that the crossing points are far from ¢=0 (a'/37, > 1), one of the
four terms, which contains a factor erfc[a*/37,e715'/%], can be neglected. Thus,

- 0 t
Ca(l=°°)=—-’éﬁ(n/a)"’{e""”""f x'(l)exp[—i(A'l—f V'(t')dl')]erfcl-a""’(t+To)c“'“ldl
- 0
- ¢
+ c((oosv/n f x'(l)exp [—i(All _f 1% '(l')dl')]erfc[-a"c(l - To)e-uvul(”
[\] 0

- ¢
+ c““"”“erfcl-a"“rov'"“]f x'(t)exp[—i(A'l -f V'(I')dl')]df} . (A4)
0 [+

This again, is to be evaluated using the stationary-phase method. Since the error functions with complex
arguments are oscillatory functions, their presence in the integrands of the first two terms in Eq. (A4)
will modify the stationary-phase positions of these integrals. To cope with this, we use Egqs. 7.1.2, 7.1.9,
7.1.10, 7.3.9, 7.3.10, and 7.3.22 of Abramowitz and Stegun® to express the error functions in terms of an
exponential (oscillating) part and the auxiliary functions f,g of the Fresnel’s integrals, which are slowly
varying functions. By doing this, the integrals are written in a form suitable for the stationary-phase
method. We shall nuw demonstrate the method by evaluating the first term in the curly bracket of Eq.
(A4), to be called W. The evaluation of the second term follows exactly the same procedure.

In terms of f,g and the exponential functnon, W can be written as 2 sum of three terms, In two of these
ter ms a phase of the form ¢ +sa(¢+ 7,)° appears which is simply the Taylor-series expansion of &/
-Jo v\t at t=-7,, We transform tlus term back to its original form and find

W= Qp-itetst/V) J ; _-( - vy 1:)] 1
20 Lox (I)exp[ ila fo ")
+isf.'2f° M2+ g% 2 els® exp[—i((A+ A’y -f'[V(z')+ V'(I')]dt')]dl
*To 0

=19 t
-isfzf X (O + g5 2 et exp[-i((-'-‘-+ A’)t—f [V(I')+V'(l')]dl')]dl, (A5)
-0 0

where 0 =tan™g/f and the argument of f,g is
lRa/m 2+ 1] .

Other parameters are defined in Egs. (6 29)-(6.39). The integrals in Eq. (A5) can be evaluated using the
stationary-phase method. Since X’ = x,, a constant during the collision, and f,g,8 are slowly varying func-
tions compared with the rapidly oscillating exponential part, we can evaluate them at the stationary-phase
points, -7, for the first term, -7, for the second and the third t. rm, and take them out of the wntegrals.
The remaming 1ategrals are evaluated using the same method as that leading to Eqs. (A2) and (A3) for .
Then, the error functions can again be written in terms of f,# functions, which leads to Eq. (6.30).

The same procedure applied to the second term in Eq. (A4) yields Eq. (6.31), The evaluation of the
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third term in Eq. (A4) is particularly simple. For stationary-phase point 7, far from 0, the erfc function
can be approximated by 2, and the integral iz done by the stationary-phase method. This method yields

Eq. (6,32).

APPENDIX B

The excitation probability can always be written as a sum of three terms, Pg, D,, and Py representing
the stepwise, the direct, and the interference contributions, respectively, In the most general case, they

are
( {2 (1+5,)s8in2¢ ~ (1 - 5,)s" s8in2¢’

+(f1+g)[1 - s 8in2(p + ¢; ~5'6))]

+[2(/3+g0)] /s sin(20 + ¢’ + ¢y ~s'1/4 ~5"0)) = co8(¢’ = by ~5'7/4 +5"0,)]
+5,[2(/F+ gD/ Ys sin(2¢ - ¢’ + g+ 'n/4-5s'6,) - cos(¢’ +d>, -s'n/4-s'0)}}, (B1)

Pp=[(xoxsm)/ aa®)(£3+ 831 ~s"sin2(¢” - s65) + 2(/3 + g1 - cos2(¢7, =58, = "8,)]
+ 20203+ gD /*(cos(e” + ¢y, - 250, -5"6, - s"1/4) - cos(@g, = ¢ = 5”6, + s*n/4)]},

Pyr= LxoXom)? rr)’( ([;+;_f,)) 12

[+] oo

(B2)

X (=8,5,{cos[0+ ¢’ +¢" = (s =5 =s")1/4 ~56,]+cos[@ + ¢' = ¢" - (s - " +s"V0/4 +50,]}

+s,{cos[p - ¢’ +¢" = (s + 5" =5"In/d4 - s6,)

+cos[@ - ~¢" ~(s+s" +5")n/4+56,]}

+5,858 (2073 + gD st + @' - & = (s - s")n/d +50,+ 5”6,

~sin[d +¢' + ¢y = (s ~s")n/4 =58, - s"6.]}
- 55" [2(f3+ gD ¥ sin(¢ - 0" - &y - (s + )0/ 4 +56,+5"0,]

- 8in[¢ - ¢’ + ¢y - (s +5"0/4 - s0,-s"0,]}

-5,8:8 (2072 + D] % (sin[o + ¢" + ¢g — (s -5 "In/4 =505~ 50,]

+sin{¢ - 0" + ¢, = (s +s")n/4) +56,-5'6,}}
+25,5,8's" (/2 + @0 AL+ ) ¥lcos(d + by, + ¢y, ~s1/4 ~ 50, - 5", =" 6,)

- cos($ + &y, = by, ~s1/4 + 56, -3, +s"8,)], (B3)

where

%) = _A'7°+];'°y'(,')d,', ¢';0=..(A+A’)ro+£°[V(t')+v'(t’)]dt',

and all the other quantities have been defined in Eqs, (6.29)-(6,39).
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Abstract, A direct, completely quantum mechanical method of calculating transition
probabilities involved in multiphoton scattering processes is described. [tis applied to the
often treated problem of resonance fluorescence of a two-level atom and is used to give a
completely general description of the resonance scattering from an atom with two nearly
degencrate excited states coupled to a ground state, Other applications of the method are
indicated,

1. Introduction

A very direct mcthod of calculating multiphoton secattering amplitudes and prob-
abilities is described. It is a non-perturbative method which permits one to select the
information desired in the sense that no information is discarded in the formulation of
the calculation, but undesired information may be integrated out at later stages. The
method is based on a continued fraction development of the diagonal Green's function
or propagator of an interacting system given in an earlier paper (Yeh and Stehle 1977,
to be referred to as 1). The method is then applied here to the old problem of the
resonance fluorescence of a two-level atom, and to the problem of the resonance
fluorescence of an atom with two excited states coupled to a ground state. In the
two-level case termination of the continued {raction at an early stage reproduces the
well known result of a three-peaked specusam. The continued fraction is carricd one
step further and the result shows that the natural line width I' is not affected by the
power in the optical regime. This result does not conflict with the existence of power
broadening and lends support to the truncation of the continucd fraction. For the
three-level case the treatirent yields results for the most general case including unequal
couplings and arbitrary detunings of the two excited states. An application to photon-
photon frequency-time ccrrelations is also described.

2. The coatinucd fraction development

The results of I needed here are briefly stated. The derivation may be found in I.
The system contemplated consists of an atom interacting with the radiation ficld.

The interaction is assumed to be of the eleciric dipole form, lincar in the field and

thercfore involving the emission or absorption of photons one at a time. Let the system
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be specified by the time-independent Hamiltonian i

"‘5.4 - !

f; H=Hy+V. |

i . ;

y Let Py be a projection operator onto a subspace of the state space of Hy, so that ;
| Pi=Py  [PnHd=0  PyVPy=0, (1) !
| e The last of these equations is satisfied if the subspace defined by Py contains a definite ‘

; number N of photons of whatever modcs, as V acts to change the photon number by ,
: b unity. Under these conditions it was shown in I that the Green's function ¢

G(E V)= g—i— ) |
\ E- Ho"‘ V *

| satisfies the equation

‘ PNG(E, V)Py = GN(E, V)
' - - By 3)
E-Ho=PnVGnyi(E, VN)VPy = PnVGn-y(E, Vy)VPy
) where ;
Vn=(1-Pn)V(1-Py) 4)

does not couple any state within the subspace defined by Py to any other state inside or
outside the subspace.

The form of (3) does not allow a continued {raction development by iteration
because of the presence of processes both increasing and decreasing the number of
photons present. However, on writing the analogue of (3) for Gy . \(E, Vy), only those
processes increasing the photon number occur in the denominator because the inter-
action Vy cannot return the system to an N-photon state. Thus

pN+l
E~Hy—~Pni1 VNGn2E, VNa) VP

Gni(E, Va)=

Pnia
=P (E—H — Py 1 Vs
N O NN N CHo= Py 12V GuaalE, Vn+2) Vi 1Pra2

~1 L]

X VnPns 1) (5)

etc does yicld a continued fraction devclopment. A similar development exists for

Gn-y'E, Vp). .
Off-diagonal Green’s functions or transition amplitudes can be expressed in terms

of these diagonal ones or propagators as is shown in |

Pni1G(E, V)Py = Py G(E, VNP 1 VGR(E, V). ©)

This may be iterated to give higher degrees of being off-diagonal, connecting states with
different photon number. Equation (6) is not an expansion in power of V but is exact. It
docs, however, describe a transition in terms of a sequence of steps, none of which is
retraced later in the tiansition, leading from the initial to the fina! state.
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3. Forward scattering and virtual processes

Consider the atom to have a set of states |e;) which are fairly close to each other in
energy, all of which arc coupled to another state |g) through the electric dipole couplir,
V and which are not, therefore, coupled directly to one another by V. The projection
operator P, is defined to project onto the subspace of the state space of H, spanned by
the n states |e;) together with a state of the radiation field in which one mode , the ‘laser
mode’, contains N —1 photons and all other modes are empty. If & is the dipole
coupling matrix element coupling states |¢) and |e), the effective coupling & with the
laser mode is N '/2¢}, where the distinction between N and N = 1 is neglected because N
is assumed large. The transitions of concern here are in the optical frequency range, so
the rotating-wave approximation may be made. This states that photon emission is
associated only with downward atomic transitions, and photon absorption only with
upward ones. The projection operator P, projects onto the state with the atom in |g)
and N photons in the laser mode.

Under the circumstances just given, the above expression for the propagator
G.(E, V) becomes
- Py
GelE, V)"E—IJO—P,,VG,(E. V) VP,'

The processes included are transitions to an excited state by photon absorption,
propagation in this state, and then a return to the original state by photon emission. The
only absorption process possible is the absorption of a laser photon, which must
subsequently be re-emitted, so the process is one of forward scattering of laser photons.
The fact that VG,V is present in the denominator of (7) indicates that the propagator
G(E, V) contains absorption-re-cmission of laser photons to all orders.

The propagator G.(E, V,) becomes

P,
E~Ho-P.V,Gi(E, V.)V,P.

£ specifics a state distinct from g because V, cannot cause a transition to g. Thercfore
the processes included in (8) are the emission of a non-laser photon, propagation with
the atom in its ground state, N ~ 1 laser photons, and a non-laser photon in the ficld, and
reabsorption of the non-laser photon. The propagation of the system in |2) can involve
forward scattering, It isshown in appendix 1 that this has only a small eflect in cases of
interest and it will be neglected. What is left is exactly the set of virtual processes
leading to the existence of a finite width of the excited states, or to a mean lifetime for
these states against sponta:icous radiation (Low 1952). Thus (8) can be written as

P,
E—~(Ho—iD)’ ©)

Insertion of (9) into (7) yields the propagator for the atom in its ground state initially
and finally, in the presence of the laser beam.

M

G.(E, V)=

®

Gc(E: Vg) =

4, Resonance fluorescence

Resonance fluorescence consists of the scatiering by an atom of light whosce liequency w
is close to a resonance frequency wy of the atoms. When the incidentintensity is low this
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i can be treated as a single-photon process (Heitler 1954), and then energy conservation !
s» requires the scattered photon to have the same frequency as the incident one except for ‘
* . the extremely small effect produced by the recoil of the scatterer. This can be expressed ;
in terms of the Rabi frequency (Allen and Eberly 1975) of the atom in the field of the l
incident radiation. When that radiation is weak, the Rabi period is much loager than :
' the mean lieftime of the excited ato:m, so successive scatterings are mutually indepen- '
dent, When the intensity is increased so that the Rabi period becomes comparable with ;

the mean lifetime, the process becomes a multiphoton one because at any instant the
state of the system in the Schrodinger or interaction picture is a superposition of states
containing diffcrent numbers of incident and scattered photons, Under these circum-
stances energy conservation imposes only a condition on the sum of the energics of all
the scattered photons, Also, various scattering processes lead to the same final state, so
quantum mechanical interferences affect the fluorescence spectrum,
The spectrum of resonance fluorescence of a two-level atom has been found by
many authors using many methods of calculation (Mollow 1969, 1975, Carmichael and
Walls 1975, Smithers and Freedhoff 1975, Swain 1975, Renaud et al 1976). When the
. excited state is not unique but is muitiple, the problem becomes more complicated, but
. has been treated in a special case by Sobolewska (1976) and more generally by
Kornblith and Eberly (1978), What is presented here is a formulation of this problem in
completely orthodox quantum mechanical terms; a transition amplitude from a pre- ‘
. pared initial state to a possible final state is calculated, and the corresponding transition !
probability is summed over all observables not used in specifying the final state of |
interest experimentally, It differs from methods involving the direct calculation of
correlation functions (Renaud et al 1976) in that the transition amplitude contains all
the information about the system that exists in the specification of the system, whiie a
formulation which calculates the evolution of a correlation operator does not automa-
tically contain any information about higher order correlations.
The system at time ¢ = 0 contains an atom in its ground state |g) and a radiation ficld
with a single mode, the laser mode, excited to its N-photan state, all other modes being
in their ground or vacuum state. At time ¢ >0, a number of photons may be missing
from the laser mode and some other modes may be occupied. Neither the number of
{aser photons missing nor the number of scattercd photons present has a definite value
at a specified time, but under the rotating-wave approximation (which will be made) the .
two numbers will be the same if the initial and the final atomic states are the same. In
the method to be described, the coupling system of atom and field is allowed to develop
until m scattered photons have been emitted, and then the atom is removed from the
laser beam. This does not correspond exactly to a common experimental situation »
{Schuda er @l 1974, Hartig et al 1976, Grove et al 1977) where the atom is illuminated
for a definite timo by the laser, but the difference is small if m is at all large, and the
resulting simplification is great.
A Feynman diagram representing the process is seen in figure 1. The atom, initially
in its ground state, alternately absorbs laser photons of mode w and emits scattered
photons of modes vy, v,,..., »,. The alternation is a consequence of the use of the
rotating-wave approximation in which photon absorption necessarily accompanies an
upward atomic transition and photon emission a downward one. Not shown in the
diagram are the forward scattering processes that also occur or the virtual emission and
absurption processes that account for the existence of spontancous emission into the
non-laser modes with mean lifetime 1/I". These are contained in the propagators. The
propagator G(E, V)is denoted by a broken line, G (£, V) is denoted by a dotted line.
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Figure 1, Feynman diagram representing the successive emissions of scattered photons by
an atom illuminated with single-mode light. Propagation with forward scattering is shown
by broken lines, with cmission and reabsorption of non-faser photons by dotted lines. The
single line represents a free propagator.

After the emission of the mth scattered photon the atom leaves the laser beam so the
last propagator is Go(E) denoted by a single line. i
The strength of the coupling between the atom and a mode of the field is given by
2
€ Wy

172
¢= (3?-) (eldlg) . (10)

if the mode is unoccupicd (emission only possible) or contains one photon (reabsorption
of a virtual photon), If the mode is highly populated, the coupling & is given by

=NV (11)

where the difference between N and N 1 is neglected. Here L is the volume of the
space in which the field is quantised, and d is the dipole moment of the atom.
Polarisation effects can be included in the calculation by suitably speci{ying this dipole
coupling, but this is not done here. .

As stated above, virtual emission and reabsorption of non-laser photons are
included in the propagators. It is possible for a virtual emission and reabsorption
process to straddle other processes such as forward scattering or non-forward scatter-
ing. The cflect of the former is shown to be small in appendix 1, and the latter is also
assumed to be negligible. This means that the propagators occurring in later scgments
of the Feynman diagram depend on the earlier segments only through the eigenvalues
of Hj that occur in them, i.e. on the energies of previously scattered photons.

The propagator G,(E, V) occurring after the emission of the nth scattered photon
contains the eigenvalue of Ho

E,+Now+ 2 X; (12)
iwl

if x, = vi—w is the inclasticity of the ith scattered photon. If the atom has p excited
states coupled to the ground state, the free Hamiltonian Hy appearing in the next
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following propagator G.(E, V) is diagonal and has the form of a p X p matrix

Er‘(N"l)(«)’*‘EE.qX; 0
0 E;-(N-Dw+2l.,x . (13)
Ep“‘(N"‘l)O)""EFa]X{

The couplings of the ground atomic state to the excited states are all of the form

é1
PVvP= | §
& .
P.VP. = (), 63,004 €p) (14)

the former describing the absorption of laser photons, the latter the emission of
scattered photons. The emission of laser photons occurs only in connection with
forward scattering, and the absorption of non-laser photons in connection with virtual
processes,

The amplitude for the successive emission of scattered photons »y, va,..., Py, in
that order is
o

™) = % j dEF(E)e (15)

with
F(E)=Go(E;xm+.. A X)) VGAE; ¥t t o A X)) VGBS X1+ 20)]
X.. . X[VGAE; 0 VG.(E; 0)]

G., G, and Gy are here no longer aperators,

The second argument indicates the value of Hy appearing there. All of the poles of
F(E)lic in the lower half of the complex E plane for reasons of causality, and they all lie
a finite distance below the real axis except for the one coming from Gy, which is only
infinitesimally below. At large times, thercfore, only the contribution from this one
pole need be retained. It occurs at

(16)

E=E,+Nuo+ 2': Xi an
{a}

therefore
QJ(V‘)(‘) ‘fwy(xm)g (xm + Xo- l) ‘e ‘9(xm +xp-rt.. ~+xl)

xexp[—(Ey+Nw +x1+...+x,)] (18)

where g (x) is the content of a pair of square brackets in (16) evaluated at the pole of Gy,

The amplitude €"'(s) corresponds to a specified order of emission of the m
scattered photons. The final state is the same for any order of emission, so this
amplitude must be symmetrised by summing over the m! different orders of cmission.
There is a continuum of modes present in the limit L* - 0o so that double occupancy of
modes does not occur. The transition probability is the absolute square of the
symmetrised amplitude, and will contain ‘direct’ terms in which the order of vertices in
the two complex conjugate factors is the same and ‘cross’ terms in which it is diflerent,
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The cross terins will be shown to be responsible for the ‘coherent’ part of the spectrum
and for the modification of the side bands coming from the dircct part,

The transition probability just found relates to an observation made on the system
after m photons have been scattered, It is possible to make obscrvations of a different
kind involving, for cxamp!c, the sequential cmission of two photons of different
prescribed frcquency in a specified order (Aspect et al 1980). In this situation the
amplitude €™"(r) must not be symmetrised in these two photons, Such a situation is
discussed in § 7. The summation over unobserved photons is converted to an integra-
tion over the wavevectors in the customary way, namely

d’k
2 [

The frequency dependencies of the quantitics of interest herc are all peaked in the
neighbourhood of the atomic resonance, so the above integration can be reduced to

L
@)

with wo cither the resonance frequency or the laser frequency. x, is chosen as the
observed frequency and is denoted by x.

A major simplification is provided by the vanishing of all intcgrals in which the order
of the variables integrated over in the two complex conjugate factors entering the
absolute square is not the same. This is shown in appendix 2. In cvaluating the
spectrum, therefore, the only ordering, of significance is provided by the location of the
Lobserved photon’s emission vertex; in the direct terms this is the saivic in the two factors,
in the cross term it differs in the two factors.

A typical direct term in the spectrum is

Idnkwoj dk=KJ dk

-1
Km J‘ dXz ‘e d.\’my*(x.,.)y*(xm +Xm—l) e 9*(x.n + .. +X +Xz)

x’(xm)ﬂ(xm +xnl-l) ves 9(xm +oo0tx +X2) (19)

where x replaces x, and the observed photon is emitted at the second vertex. x, occurs
in only two factors, and on integrating over the interval (~<0, 0) one obtains

K J dx'g*(x)g(x") =1 (20)
because this is simply the probability that the atom will absorb a laser photon and emit a

scattered photon sometime during the process of scattering m laser photons, which it is
certain to do. After this, integration over x3 leads to

AQx)= Kj dx’ ¥ (e (x"+ x)g (x")g (x' +x). (21)

Subsequent integrations lead to further factors of unity. Because the observed photon
can be cmitted at any vertex, the total contribution of the direct terms is

mA(x) (22)

neglecting the anomaly of the contribution when x is the mth photon emitted when
instead of A(x) one obtains g*(x)g(x).
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A typical cross term in the spectrum is

Km‘! J dxz... dxmf*(-\'m)y*(xm +x)9*(-vrn +x +xm—l) e 9*(xna +xt.. .+X2)

Xs(xm)y (X + Xin=1) o« ﬂ(xm Fovit X+ X) . -.9(xm +...0+x2). (23)

Here x appears ! places later in the sequence of ¢* than in the sequence of g.
Integrations over x; up to x,,-1-1 lead to factors of unity. Integration over x,,- leads to

B =K [ de' 9"+ )g (o' + 2). (24)
After this, integration over Xu-1+; leads to
H(x) = Kf dy’ g% 0+ x)g (4. (25)

Note that FH(0) =1, and H*(x) = H(~x). Altogether / -1 such factors occur followed
by

E'(x)=K I dx’ g* (g™ (x' +x)g (x")
=E*(-x) (26)

unless x occurs in the left-most factor g™ when E'(x) is replaced by H(x)g*(x). For
large m this makes little difference and is not taken into account,

For a given separation ! of the occurrences of x in the factors ¢™* and g thereare m — 1
positions of x, and / can range from 1 to m - 1. The total contribution of the cross terms
is, therefore,

m-=

2 Re (E(X)E*(-'x)' '(m—z)(mx))"‘). @7

1

Tha factor 2 includes the contributions from terms in which x occurs later in the

sequence of ¢ than in that of ¢*.
The spectrum P(x) of ascattered photon observed without regard to the frequencies
of any other scattered photons can now be written as

P(x)= A(x) + E(x)E*(—;):TI':'}f: (m =D )
+E(—-x)E*(x);1; ';'i: (m = D(H (=), (28)

This depends on m only through the sums. These sums contribute, for small 4, a very
sharp peak whose height is proportional to m and whose width is proportional to 1/m,
as shown in appendix 3. For m-> 00 this approaches a delta function, and is the
‘coherent’ part of the fluorescence. It is satisfactory to obtain a finite peak for a finite m.
As m-0, the duration of the experiment becomes long without limit and then an
infinitely sharply defined f1~quency first becomes physically possible. ‘The spectrum is
symmetric about x=0 or ¢ = w.

en
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§. Two-level atoin

This case is very familiar, so it will be discussed only to the extent that it clarifics the
application of the mcthod of calculation. The projection operators are one dimen-
sional. Defining the detuning 6 by

8=w-wo=w~—(E,~E) (29)

the function g(y) becomes, setting E -+ Nw = 0,

- ¢
s = sy -6 \0)

The denominator is quadratic in y so the poles are readily located analytically and the
integrations carried out, From (21) one finds

K =T/mt"? (31)

which is the result to be expected if &' is the coupling responsible for the decay
characterised by I, Introducing the quantitics

X =387 +4£7 T+ (8% +4£° - T°) +45°T%)

32
Y=6I'/X 32)
it is found that
Alx) = 4r2ge [ r-yyr (+Yy)r
N X+ VXA T - YO+ T+ V) (b= Y)
1 XP-T*-2X(x=-X) XP-1P42X(x+X)
+x2+r2( =X+ TES T )} (33)
B 4ig’T(x =il
Hx)= [(x =il = XYWy ~iD?+ Y3 (34)
l:“(x)=41‘2§'§“ X"+ (6 =3iD)x - 21" +i8) (35)

[ =D =X i)+ Y+ 0= Yoy

Inserted into (28) these yield the familiar thiee-peaked spectrum. The contribution of
the direct terms, A(.2), consists of four Lorentzians, two centred on the laser frequency
w, which reduce to tliree at exact resonance, § = 0. In this case the central peak is twice
as high as the side peaks and of the same width. The peaks are separated by X which is
the Rabi frequency 24 corrected for detuning 8 and damping I'. This is the spectrum
obtained by Smithers and Freedhioii (1975) and Smithers (1975) and later corrected by
them to include the contribution coming from the cross terms, Thesc adel the coherent
peak and modify the side peaks to one third the central peak height and three halves ihe
central peak width, This can be seen in the high-intensity limit. When €» 8 and I, the
dircct term becomes

£
4

2

( 2 1 1 ) (36)

A=\ e G

R Ry
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ang the cross terms in (29) yicld, except at x =0,

Nre

(37

(&)

-5—'3( it S S : + )
4 \(x =280 +T7 (x+28°+I° (x =28+ (1)’ (v +28)°+CGD/
Thus the cross terms replace the sidebands given by the direct term A(x) with wider,
lower ones and supply the coherent part at x =0 consisting of a sharp pcak whose
limiting form is a delta function, as shown in appendix 3.

6. Threc-level atom .
The level scheme is shown in figure 2. The detuning 8 is measured from the lower level

E, which is A below E;. The coupling of the excited states to the ground state is
measurcd by £}, £3. The matrix Ho =il is two dimensional and the couplings are

rves() PV = e (8)

“:
1
'~T—Ts,

“mmanes

Figure 2. Level schieme of an atom with two levels coupled to a single ground level,

The propapator G.(E, V;) depends on Ho—il. For T to be non-diagonal in the
two-dimensional subspace of the excited states these states would have to be coupled by
the emission and reabsorption of photons. They would have to have the same angular
monentum and parity quantum numbers, Within the electric dipole approximation
they couwld differ only in principal quantum number which would make them widely
separated, It is natural, therefore, to assume that 1" is also diagonal in this subspace.

From (9), then,

Y _p(E~Eg—No+6+il 0 -
G (E, Vg)-Pc( 0 EaEg—Nw+8—A+i!‘2) F
E-E,~No+5-A+il; 0
P. ) )P
_ ( 0 E-E,—No+§+il (39)

(E-E;=No+8+iC)E-E;—Nw+8§-A+il)

R R O T e A N G = LI S

e
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for the leg before the emission of the first scattered photon. Later legs are different in
including the inclasticitics of previously emitted photons. The function g(y) now has
the form,

_Ei&(y+8-A+iT)+ Lb(y +8 +iD0)
(y+8+il)(y +8~A+iT2)
x( _.£¥<)»+6—A+irz>+§§<y+a+irn))“
(y+8+iC)(y+6-A+il)
- Ei&i(y +8-A+il)+ &by +8+iT)
py +6+il)(y+8 - A+il%) = [£1(y +8 - A+ila)+ £5(y + 8 +ily))’

#(y)

(40)

The denominator is cubic in y and it is not practical to locate the poles analytically, As
£2 -0 this approaches the expression (30) for the two-level atom,

Some results for the spectrum resulting from using expression (40) for ¢(y) in
cvaluating (28) are shown in figures 3, 4 and 5. The poles nceded for this evaluation are
located numerically, This spectrum has also been caleulated for a non-diagonal T
matrix (Yeh 1977), for one with all clements equal, The result is a single sideband
speetrum for tuning midway between the levels, a result quite distinet from figure 3 and
fron: that of Sobolewska (1976). This suggests that observation of resonance fluores-
cence from a three-level atom of the kind considered would provide a way of
determining any off-diagonal character of I',

For unequal couplings the spectrum is more complicated, showing three sidebands,
These can be interpreted as sidebands separated by the Rabi frequency 2&y, prominent
when the laser is tuned near the lower excited state, as sidebands separated by the Rabi

Intenstty

Figure 3, Three-level atom fluorescence, with variation of detuning 8, when £y = ¢33,
A=6,11=1,=1, m =15 All \pectra are symmetric about 1 =0.
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Flgure 4, Three-level atom fluorescence, with variation of detuning 8, when & =

A=6,1=1,=0.11 and m =185,
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Figure 5. Threc-level atom fluorescence, with variation of coupling &, when €, =3, A= 6,

81=3, I =1,1=(&/6) m=15.
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frequency 2£;, prominent when the laser i is tuned ncar the after excited state, and as
interferences between the amplitudes for these two kinds of scattering. In general, the
number of sidebands agrees with a dresscd-atom picture (Cohen-Tannoudji and
Reynaud 1977), and the details of the spectrum depend on the detunings and couplings
involved.

The resonance fluorescer. 2c from a three-level atom has been studied by Kornblith
and Eberly (1978) using a very different mcthod which seems to use the diagonal
character of I in an essential way. They also consider polarisaticn of the scattered light,
which could be done here but has not been. Their results for equal couplings show two
sidebands above and below the central peak, just like the present results, They report a
disagreement with the present authors, a disagreement arising from a comparison of
their results with results caleulated with a non-diagonal T and presented at the 1977
International Conference on Multinhoton Processes at Rochester. The source of the
disagreement was not known until recently,

7. Two-photon frequency and time correlations

Two-photon correlation experiments have been done in connection with resonance
fluorescence. One was the ‘antibunching’ experiment of Kimble ef af (1977) showing
that a single atom which has just emitted a scattered photon cannot immediately emit
another, This had been predicted by Kimble and Mandel (1976) and by Carmichacl and
Walls (1976). Another is a correlation experiment involving detecting photons occur-
ring in the two sidebands of two-level resonance fluorescence with a delayed coin-
cidence (Aspect et al 1980). Aspect er al show that photons corresponding to the two
sidebands tend to come out in pairs with a small time-delay, and that the photon
corresponding to one side band preferentially precedes the one from the other
sideband. They give a theoretical account of this in terms of perturbution theory,
‘This particular experiment has a remarkably simple description in the formulation
of resonance fluorescence given here. The transition detectesd is one in which a photon
of frequency va = w +2a4 isemitted, and then a photon of frequency vy = @ +xp. ¥4 and
ry are chosen to be the two sideband frequencices, and the laseris detuned by an amount
large compared with the Rabi frequency 2¢ and with the natural linewidth I'. Consider
the two photons v4 and vy to be emitted successively, say after »y. Then the amplitude
(18) contains the sequence '

ﬂ(x)m ve n9(xm+- .. +x2)9(xr:|+- . '+x2+xll)
Xglom+. ot xa+xptxa)g (Xm +. 0o b X2 FXp+an-+xy) 41

which must be symmetrised in all photon variables except xg and x4, which must retain
their relative order, and it is assumed for simplicity that they are always successive. On
squaring there will be direct and cross terms.

The analogue of P{x) in (28) is now

ng-2

B(xa, xu) = A(xa, x0) + E(xa, x0)E*(—xp, —xA>—~ }: (n = D(H (xa+ xg)"™

m=-2

+ E(=x, ~xp) E* (xA,m)* L (m = D(H(=xg=xA)" (42
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For a two-level atom one finds that

A(xp, xp) = Kf dx’ g*(x")g*(x' + xp)g ¥ (x' + xp+xa)g ()9 (x" + xp)g (x' + xn +Xa)

- 2ire" et ( 1
X =1Y)(X +iDT = Y)\(vu + X =1 Y )xn(tn + X + ) (xn 1= Y))
X (xp+xa+X —1Y)an+xa)(xn -: xa+ X +il) g+ xp+i(N= V)]
X Y)(—-xn)(—xul FX I~ t i = V)]
Xt X =¥ )5r(rn +lx A = Y)]
1

+
(".\'n XAt X =i Y)("'Xu - .\'/\)(".\'u —~Xpat A+ iI‘)["Xn ~xati(l’— Y)]

1
At X V)N a t X AT 10 Y)])
+HX, Y)= (=X, ~Y). (43)

It is readily verified that the poles at xa =0, xy =0 and x5 +xn = 0 have zero residues,
There are no singularities in A(xa, xu) for physical values of the variables.

EQaxn)=K _[ dx’g (x)g (x'+ xp)g (0 X+ XA)g ¥ (X + xp + XA

a 1
T 12,4
= S R A= V)
1
x(—xA+X~i-iI‘)[—xA+i(I‘— Y))(=xa—xpt X +iD)[=xa—xy+i(F"=Y)]
+HX, V)~ (X, -Y). ' (44)

‘To compare with the experiment of Aspect e al (1980) one sets

Xatxy=n 7 small
and

S»E»T
so that

X =6

Y =I(1-2¢7/8%).

Just as in expression (28) for the single-photon spectrum, the sums in (42) lead to a
coherent part of the two-photon frequency correlation at xa + xy = 0. To study this one
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‘ looks at the value of eo(xy) = IE“ (~xg, xm)l2

6'462 1 1

eoliw) == (pt+8) T2 2+ 2288 (45) :

The value of a in the expansion H(n) = 1+ian+...is given by
-1/, T2+8?
: - (1 2 ) (46)
From appendix 3, equation (A.12), the coherent part is now seen to be
Yeolem)n = Hsma’n?) —- :/—;T—Ieo(xn)s(n). 7

The cocflicient of §(1) has maxima as a function of xp at xy=0and at xy = -8, The
value of xa associated with the former is x4 = 0, and so this is just a reappearance of the
coherent patt of the single-photon spectrum. The value of x4 associated with the latter
is xa = +8, so that the first photon is in the upper sideband and the second photon in the
lower sideband if 6 > 0. 'The maximum with the two photons in the sidebands is smaller
than that with both photons in the central peak by the factor (2£%/8%)°. This coherent
part has an interpretation similar to that of the single-photon spectrum coherent part,
Emission of a single photon with x =0 does not disturb the energy balance and
amplitudes for this emission can interfere even when widely separated along the
sequence of cmission vertices, which yields the coherent part of the spectrum. Emission
of pairs of photons x  and xy With x4, xu # 0 but x o +xp = 0 is a process of higher order
which also preserves the encrgy balance, and therefore mterference over large intervals
can occur apd yield a coherent part, but a smaller one because the process is a
two-photon process. These amplitudes are largest, of course, when the two photons are
in the sidebands of the single photon spectrum,

The direct term A(xa, xu) has a very similar behaviour, but it is less dramatic
because it contains no delta function and because at large detuning the coherent part is
dominant,

In the experiment of Aspect er al (1980)

§/IT=12x10° £T=12x10°

so that conditions (44) are well satisfied, The time delays employed in their delayed’
coincidence measurements are of the order of, or less than, 1/I" so that the restriction
here to successive photons is justified. Their § is positive so the early photon should be
the high-frequency one, as is seen in their figure 2(a). The width in x4 +xy should be ,
extremely narrow, but that of xp separately is I' so there is no conflict with their result
shown in their figure 2(b).
For longer times the probability that the observed photons are emitted successively,
will decay more or less exponentially, and on integrating over the modes of any
E intervening photons, the correlation will be expected to be mnch reduced. The lack of

an obscrvable iise time in the correlation is due to the large detuning which makes the
Rabi frequency large even though the transition probability 1o the excited state remains
small so the atom quickly becomes as excited as it ever does. Near resonance the Rabi
frequency is smaller because here it depends mostly on the coupling, not the detuning,
and the rise time can be detected. This is just the antibunching effect mentioned above.
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8. Discussion

It has been shown how a conventional quantum mechanical approach involving only the
calculation of transition probabilitics can be used to find the spectrum of resonance
fluorescence and other features of multiphoton scattering processes. This has the
advantage over some other calculational methods of making the dynamical basis of
vaiious approximations ciear. Italso has the advantage of being extendible to aspects of
the problem other than the spectrum without new formulations. For example, the
two-photon correlation experiment just decided by Aspect er gl (1980) in which
successive fluorescence photons are shown to have inelasticities predominantly of
opposite sign is seen from (18) to result from the fact that propagators contain the sum
of the inclasticities of alrcady emitted photons in the denominator, and that the
amplitude for successively emitting photons with small resuitant inelasticity will exceed
that for the emission of successive photons with large resultant inclasticity. This
experiment is a convincing demonstration of the multiphoton character of the entire
effect. Another such demonstration is the existence of the coherent spike in the
spectrum, which requires interference between amplitudes for the emission of many
photons for its emergence.

It can also be determined how many components the fluorescent spectrum should
have. If there are p excited states, here either 1 or 2, the projection operator P, willbe p
dimensional, and the reciprocal of Hy ~il" in (9) will have a polynomial of degree p in its
denominator, The function g(y) will then, in general, have a polynomial of degrec
r=p+1inyasdenominator, All the functions detcrmining the spectrum are integrals
over y of products of ¢ and ¢*, which can be evaluated using the residue theorem. The
resultis asumof terms with polynomialsin x containing factors of the form (£x + ¥ — ;)
where the ; are the poles of g(y), and similar factors with 7 replaced by n*. A par-
tial fraction decomposition leads to Lorentzian terms with denominators £x +nf —1;
etc. These terms lead to lines centred at &Re(n, — ) where it now does not matter
whether the n are starred or not, There are, therefore

,,Xr(r-l)

rA

lines arising from terms i # /. When i = the line is centred at x =0 and has a width
which may vary with i, There are, therefore,

rir=1+1=p(p+1)41

lines to be expected in the resonance fluorescence spectrum if there are p excited states
coupled to the ground state, or better, if g(y) has a denominator of degree p+1,

In the three-level atom case, if 1" is chosen to have all its elements equal instead of
being diagonal, ¢ (y) ‘accidentally’ acquiies a quadratic denominator for tuning midway
between the two resonances and, as mentioned above, this yields a three-peaked
spectrum even from a three-level atom (Yeh 1977),
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Appendix 1

There is an effect on the natural linewidth of an excited atomic state produced by the
presence of a laser beam. In the absence of a laser beam the natural linewidth I' (half
width at half maximum) appears as the imaginary part of the sum in the denominator of

@8

glz
E.~(N-1)w-]k|
where no forward scattering is included because of the absence of the laser beam. On
converting the sum into an integral through the prescription

P.V,Gy(Eo, Vo)V Pe =), 5 (A1)
k 120

d'k
v oy
and inserting the standard ie to define the treatment of the pole, one arrives at
r= —1m~-‘f— I k*dk d(cos 6) d(/)--—‘f—— = gw —-|(e|d|g)|2 (A.2)
@2n)* ~|k]+ie 3

The real part, the level shift, is in this approximation formally infinite and is neglected as
usual, or is absorbed into the eigenvalue E..
When forward scattering is included in the propagator Gg(Ep, V,). ther:

N §;2
Fe)=-Imz> )J e TN Do S E B s (N =20
L v £" Q48 Q-4
=-Im )IdAZQ(w+26 B3 YT IRy Ikl)
=M +1 (A.3)

where O = (82+4§2)”2 is the Rabi frequency. Then

M= Q+ (wo+za -3Q)°r

20w
(A4)
In= 2- (w +38 +30)°T. .
2 ZQ 1 012032 v
The intensity-Jdependent width is
re) = 1‘(1+——+“) (AS5)

There is no ‘first-order’ effect on the width, and where the ‘second-order’ effects are
appreciable the approximations such as the frequency independence of the matrix
element which have been made are questionable.

This result does not contradict the existence of power broadening, where the width
of the absorption spectrum increases with increasing laser intensity. It only shows that
the parameter I is not itself strongly intensity dependent, so that the width of the central
peak in resonance fluorescence is nearly intensity independent, as is the case experi-
mentally. The width of the absorption spectrum does increase with increasing incident
intensity.
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Appendix 2

Let x;, x; be two photon variables to be integrated over which occur in different order in
the sequence of g* and of g in (17) or (21). If x, appcars further to the left than x;, then
xi appears only in the combination x; +x;. Let

u=xi+x v =X die dv = dx; dx;. (A.6)

Inthe sequence of g*, then, if x; is to the left of x; these two variables can be replaced by
u, v. In the sequence of g, x; appears alone rather than xy, so these variables can be
replaced by 1 — v, u. Thusinthe ¢*, v appearsas +v, in the g as —v. The poles of g(y) lie
in the lower half of the y plane for reasons of causality, so all the poles in the integral
here lie in the upper half of the v plane, On evaluating the integral by closing the
contour in the lower half plane, zero is obtained.

Appendix 3

The coherent term in the spectrum given in (26) comes from the cross terms, From the
definition of H(x) in (23) it follows that the expansion of H (x) about x = 0 has the form

H(x)=1+iax+bx’+... (A7)
with real a and b. Similarly E(x)E*(—x) has the expansion
E(x)E*(~x)=gotia'x +b'x*+. .. (A.8)

with real g9, @', b'. The first sum in (26) becomes, up to quadratic terms in x,

(eo+ia' +b‘x2),~:—{ ';'i: (= D[+ (1= Diax +bxd) + 20~ 1) - 2)ax?)...

={gg+ia'x + b’xz)[i'(m ~1)+3(m=1)(m - 2)(iax + bx?)

~35(m = 1)(m =2)(m = 3)a’x?), (A.9)
'Only the real part contributes to the spectrum, and for large m the contribution
becomes .

eolim —Ema®x?). (A.10)

This has a height at x =0 proportional to m. It has a half width at half maximum
determined by

im —‘2’5m3azxf/z =im x1,2=~/5/ma (A.11)

which is inversely proportional to m, so the function approaches a multiple of a deha
function as m >, The constant of proportionality depends slightly on the higher
terms in x, For example on taking (A.10) to be exact between its zeros and the
contribution from beyond this to vanish one obtains

2 2.2

4 &g
fim 4 m(l m a *) £0 5 (x) == 2,309 52 (A.12)
12 ) =) 20 e

00
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2
3 Alternatively, fitting the left-hand side to the function (sin ky/y) whose limit for large k i
b is w8(y) one finds
ma’ys? 7 €0 £0 :
. lim Jeom( 1=+ ) = T T8 8(1) = 2221 8 (x). (A.13)
7 mM-+0o 12 \/-2. lal lal H
3 A more accurate determination of the constant would be tedious and seems unncces- ‘ 4
Q d sary for present purposes. © §
§ :
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Application of laser spectroscopy
to collisional studies*®

P.R. Berman
Physics Department, New York University, 4 Washington Place, New York, New York 10003 (U.S.A))

Summary, The manner in which laser spectroscopic techniques can be use to probe collisional pro-
cesses in atomic vapors is reviewed. A discussion of the saturation spectroscopy of three-level systems,
coherent transient spectroscopy, and a beam-laser spectroscopy system is presented. It is shown that
such experiments can provide useful information on both the total and differential cross sections for
atom-atom scattering.

Résumé, Application de la spectroscopic laser aux études collisionnelles. Nous examinons la fagon
dont les méthodes de spectroscopie laser peuvent étre utilisées pour sonder les processus collisionnels.
On examine la spectroscopie de saturation dans les systémes a trois niveaux, la spectroscopie des effets
transitoires cohérents ainsi qu'une expérience de spectroscopie par jet atomique et laser. On montre
que de telles expériences peuvent fournir des informations importantes concernant a la fois les sections
efficaces totales et différenticlles de diffusion atome-atome.

The traditional method for studying atomic or molecular collisions is the use of crossed
atomic or molecular beams. Owing to the low beam densities one encounters, such studies
have generally been restricted to atoms or molecules in ground or metastable states ;
however, it is now possible to use lasers to achieve substantial excited state atomic popu-
lations so that scattering from excited states may also be studied in crossed beam expe-
riments [1]. Typically, one obtains the differential scattering cross section as a function
of center-of-mass energy in crossed beam experiments. These experiments, although often
difficult to perform, provide a direct measure of the scattering process.

A somewhat less direct method for studying collisional processes in gases has been
available for many years under the heading pressure broadening. Since the absorptive
properties of a vapor are affected by collisions occuring within the vapor, collisional
information is implicitly contained in the absorption or emission profiles associated with
various atomic transitions in the vapor. Using linear spectroscopy, one can measure the
broadening (or narrowing) of the spectral profile associated with a given transition of
active atoms as a function of perturber gas pressure. From such data, one can reach some
conclusion regarding the total cross section for scattering between active atoms (in the
states involved in the transition) and ground state perturbers. Using saturation spectros-
copy or coherent transient techniques, one can also obtain information about differential
scattering cross sections involving excited-state active atoms (see below), albeit of a some-
what different nature than that obtained in beam experiments.

Owing to time limitations, 1 shall not discuss linear spectroscopy [2],and shall, instead,
concentrate on the saturation spectroscopy of three-level systems. I shall also mention
some coherent transient experiments that are particularly well-suited to collisional studies
and a recent experiment employing a combination of atomic beam and laser spectros-
copic techniques.

(*) Supported by the U.S. Office of Naval Research.
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200 P.R. Berman

Before beginning to discuss three-leve! systems, it is perhaps useful to describe the type
of collisional data one can hope to obtain from laser spectroscopic studies involving cells
rather than beams. In a typical experiment, one uses a laser to excite active atoms having
a specific longitudinal velocity and then probes the manner in which collisions with per-
turber atoms cause this velocity distribution to return towards equilibrium. Thus, in such
an experiment, one measures the differential scattering cross section averaged over the
perturber velocity distribution and the transverse active-atom velocity distribution. I have
referred to this as a poor man’s differential scattering cross section, since it contains less
information than the corresponding cross sections obtained in beam experiments. Still,
the poor man’s differential cross section is rich enough to draw conclusions concerning
the interatomic poter*al giving rise to the scattering. Moreover, the variety of cross-
sections (elastic, inelastic, exchange, magnetic relaxation, etc.) that are easily probed
using laser spectroscopic techniques guarantees, in my opinion, a promising future for
this mode of collisional study.

Three-level systems
Three-level systems have received considerable attention [3-18] for both high resolution
and collisional studies. Figure 1 illustrates three types of three-level systems. The quan-
tities § and ' label the different level schemes so that all may be treated by a single for-
malism ;8 = ' = 1 in Figure la (upward cascade) ;§ = 1,8 = — 1 in Figure 1b (inverse
V)ig=—1, B'_)= 1 in Figure Ic (V). The three levels are incoherently pumped at some
rate density Av) (G =1, 2, 3) and each level decays at some rate ;. External fields
having frequency S and ' drive the 1 - 2 transition (frequency w) and 2 - 3 transition
(frequency w'), respectively. The field propagation vectors are kZ and ek'? (k = Q/e,
k' = Q'/c) with € equal to either + 1 (copropagating) or — 1 (counterpropagating).
Spontaneous emission between level 2 and 1 is allowed at rate 72'. The Rabi frequencies
associated with the 1-2 and 2 - 3 transitions are denoted by x and X', respectively. I shall
limit the discussion to the upward cascade (Fig. Ja) and take Ay = A3 =0 ;A; ~0;
71 ~ 0, A/, = constant, to simulate level 1 being the ground state. The field at fre-
quency £ (pump) is of arbitrary strength and that at frequency ' (probe) is assumed to
be weak.

The binary, elastic collisions between active atoms and ground state foreign gas per-
turbers are treated in the impact approximation [2]. Collisions are assumed to be phase-

T vy
YA I A
?«Aay As ¢ 3 4 3

ﬁ s o
e—\l\l\b 2
¥ A2 o (b)
72 1
w.
A £ ¢
[8-871] [Beti8-1]
(a) (c)

FIG. 1. - Three-level systems : (a) upward cascade, (b) inverted V, (c) V.
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interrupting in their effect on level coherences (giving rise to broadening and shift para-
meters) and velocity-changing in their effect on population densities (i.e. collisions result
in the relaxation of any velocity-selected population excited by the pump field). This
rather simple collision model is generally valid for electronic transitions.

The pump field is detuned a fixed amount A from the 1-2 transition and the probe
absorption is monitored as a function of its detuning A’ from the 2-3 transition. If u is
the most probable active atom speed, then two cases of interest are 1A} > ku, |A] <hku.

1Al 2 ku
If the pump detuningis equal to several Doppler widths, the only resonance in the absence
of collisions occurs at &' = — A + (k + ek') v,. When averaged over the active atom
velocity distribution, the resulting line shape ic a Voigt profile centered at A' = — A with
a width obtained form the convolution of a Lorentzian of width (HWHM) v3/2 and a
Gaussian of width 0.83 (k + ek') u, if k =~ k' and € = — 1, this two-photon resonance
can be very narrow,

With collisions present, a new resonance centered at A' = 0 can result from a colli-
sionally-aided radiative excitation {19] of level two . "~ the reaction.

Ay +P+1Q >4, +P
where A4; is the active-atom in state / and P is the perturber, The difference in energy
between hQ2 and fwy is now compensated by a corresponding change in the atoms’ kinetic
energy following a collision. With collisionally-aided excitation of level 2, probe absorp-
tion on the 2-3 transition centered at A’ = 0 can occur.

Thus, in the absence of collisions, there is only one resonance centered at A' = — A,
In the presence of foreign gas perturbers, a new resonance appears at A' = 0 which grows
with increasing pressure. The width and shift of the A' = — A resonance can be used to
obtain the 1-3 broadening and shift coefficients, that of the A’ = 0 resonance to obtain
the 2-3 broadening and shift coefficients. Moreover, the amplitude of the A’ = 0 reso-
nance is proportional to the 1-2 broadening coefficient. Recent experimental data {20)
on Na(3S,;; = 3P, > 4D3p) perturbed by Ne is shown in Figure 2. The effects of
collisions for this large detuning case (A = — 4.0 ku, k'/k = 1.0375, ¢ = — 1) are clearly
seen (the second narrow resonance centered at A' = 5.77 ku arises from ground state
hyperfine structure).

18] < ku

The above type of experiment can provide total cross section data (total cross sections
may be extracted from the broadening coefficients). However, to obtain information
concerning differential cross sections, one must tune within the Doppler width. In this
case, the pump laser selects a specific longitudinal velocity group having v, = 4/k,
leading to a resonance condition A’ = — A + (k + ek') v, = e (k'/k) A. The resonance
width is on the order of the natural widths of the transition levels, owing to the fact that
only a small longitudinal velocity class of atoms is being used. The resonance is broadened
and may even be split in strong pump fields, reflecting power broadening and the ac
Stark effect, respectively. Probe absorption in the absence of collisions is shown in
Figure 3 for k'[k = 0.4. There is ac Stark splitting for counterpropagating waves in strong
fields. For the case shown o¢ co:nplete branching to the giound state (y,' = ;) there
is also some splitting for the cuntopagating case.

In the presence of collisions, wie following interactions can occur :

A +P+HRQ > 4,00, =A%)+ P
A0, = Ak) + P> A,(v,) + P
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FIG. 2. — Experimental excitation spectra for Na (38 — 3P — 4D perturber by various pressures of
3 Ne for a pump detuning 4/2n=—4.0 GHz. (Doppler width = 1.66 kuf2rn = 1.66 GHz.). Dots
1 represent theoretical fit with no free parameters.

D=1 P3O
=0
st W I; / Xz
15} X304 FIG. 3. - Probe absorption I, in the
) absence of collisions. I is normalized
R to x°, but is in arbitrary units. All
frequencies are in units of ku, P is the
pressure in Torr, and Ny (popu-
lation difference of levels Y and 2 in
30 X0.04 the absence of any applied fields}
. equals zero. The broken curve is for
L AN ) L copropagating fields (e = 1) and the
solid curve for counterpropagating
i . -l ones (e=—1). Profiles are drawn
3 10 X=1.0x40 for_yi=0. =02 3 =02
& 4 1 o\ [ v3=. 1, Kik=4 p=g'=1,
: -10 -04 0 04 10 A’ Aa=~—1, and several vaiues of x.

Collisions result in an excitation of level 2 and a partial thermalization of the velocity
distribution from the initial value v,’ = A/k selected by the pump field to values des-
cribing a thermal distribution. The degree of thermalization is determined by the number
& ‘ of collisions n = /v, (', = collision rate) occuring within the lifetime of level 2 and
¥ ‘ the rms change in velocity per collision Au. In addition, the structure of the velocity
redistribution may be used to infer something about the interatomic potential giving rise
to the scattering.

‘Theoretical probe absorption profiles for weak and strong pump fields are shown in
Figures 4 and 5, respectively, using the Keilson-Storer {21] collision kernel. One may note
the gradual thermalization with increasing perturber pressure. In the strong field case
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L FIG. 4. - Probe absorption in the weak pump

: : = field limit for various perturber pressures,
Parameters not explicitly displayed are the
ras same as in Figure 3. Collision parameters (in
units of ku} are as follows : phase «interrupting
broadenmg rates 1) 5= .007P, =.015P, .
=,016F; velocity-changing coﬁ sion rates i
: I)'=.004P, T,=.006F. A Keilson-Storer
. 2 kernel with Au = .66u Is used to describe velo- 2
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FIG. S. - Probe absorption for a :
L 1 t —ly strong pump field (x=.2). Other 2
-2 -4 0 1 2 A parameters are as in Figure 4. .
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both the integrated and peak probe absorption can increase with increasing pressure
whereas, in the weak field case, the areas under the curves are constant.

Systematic experiments of this nature were recently carried out by Bréchignac et a.
[22] in Kr perturbed by rare gases and by Liao et ). [23] for Na perturbed by rare gases.
The data for Na(3S,j, = 3P, = 4D;);) perturbed by Ne.is shown in Figure 6 for a
detuning &/ku = — 1.6. The overall qualitative features are similar to those shown in
Figure 4 (for the three-level Na system chosen, k'/k = 1.0375 so that ac Stark splitting
is suppressed). One can see the thermalization of the 3P, ; level of Na with increasing
Ne pressure.

The data of Liac ez al. [23] could also be used to test different collision kernels that
are used to describe scattering in level 2. It was found that both the Keilson-Storer and
classical Hard-Sphere kernels correctly characterized Na-He collisions, that the hard-
sphere kernel was superior to Keilson-Storer for Na-Ne and Na-Kr collisions, and that
neither kernel adequately described the entire profile for Na-Ne and Na-Kr collisions,
These results imply that large-angle scattering of Na(3Py ;) with heavy foreign gases can
not be characterized as totally hard-sphere in nature ; it would not be surprising if some
large-angle scattering could be attributed to attractive wells in the interatomic potentials.
It appears to me that this type of experiment reflects an increased interest in both the
experimental and theoretical [24] determination of atomic collision kernels.
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FIG. 6. — Experimental excitation spectra for Na (38 — 3P - 4D) perturbed by various pressures of
Ne with a pump detuning of — 1.6 GHz.

Coherent transients
It is also possible to carry out laser spectroscopic collisional studies using time resolved
techniques. Some of these methods are particularly well suited to collisional studies.
I shall mention two such types of experiments.

In time-delayed saturation spectroscopy, one uses a narrow band, pulsed laser to
excite atoms having a given longitudinal velocity. A second laser, time delayed from
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the first, is then applied to the :ame or a coupled transition in order to munitor the
velocity velaxation as a function of either time delay nz perturber pressurs. An advantage
of this technique to steady-state methods :s that twa-photon processes de not vccur in
‘the time-resolved experient since the fields are applied at different wmes. Thus, the
. probe abscrption occurs cnly from stepwise excitation, greatly simplifying the analysis.
A limited number of experimenis of this type have bzey performed [25).

A second class of experiments which holds promise for collisional studies may be
broadly characterized as phoion echo experiments. In these experiments, a system is
exposed to two or miore pulses. The pulses lead to a dephasing and rephasing of atomic
dipoles in the sample such that, at some tinie following the last applied pulse, the dipoles
rephase and emit an echo. Collisions distuch this dephasing-rephasing process and cause
a decrease in echo amplitude. Thus, the echo amplitude can 5e used to monitor colli-
sional processes in gases. This method is especially vseful in dstermining whether colli-
sions are phase-interrupiing ot velocity changing in thair effect on leve) coherences [13,
14, 26).

By using standing waves as the excitation pulses, one axcites higher-urder harmonics
in both populations and lavel coherences. The photon echoes following such excitation
can reflect collisional effects on both population densitics and level coherences {27).
Moreover, one can also obscrve popuiation echoes as various population spatial harnionics
rephase following the second pulse [28]. Studies of velocity-changmg collisions on level
populations can zlso be made using stimulated echoes {29)], which is simply a variation
of the standing-wave echo method. Photon echo experiments offer an interesting possi-
bility for future collisional investigations [28, 29].

Beum-laser experiment

Finally, I should like to mention the experiment of Phillips ef al. [30). This experiment
employed crossed atomic beams and a laser excitation-detection scheme. As in the
steady-state experiment, a pump laser excites a particular velocity class of atoms to
some intermediate state. A second laser, directed along the active atom-perturber relative
velocity axis, is then scanned to probe a coupled transition. At each probe laser frequency,
only those active atoms which have been scattered through a particular scattering angle 9
(these atoms form a cone of angle 8 about the laser axis) in the center-of-mass system
resonantly interact with the probe. Thus, measuring the probe absorption is equivalent
to measuring the differential scattering cross section. This methed has high sensitivity and
can be used for short-lived excited states; it was used to determine the differential cross
section for 3Py, =+ 3P;, fine structure state changing collisiors in Na undergoing
collisions with Ar perturbers [30].
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